B Physics Results from the Tevatron S. Burdin on behalf of CDF and DØ collaborations Aspen Particle Physics Conference 17-23 Jan 2010 Aspen, Colorado.

Download Report

Transcript B Physics Results from the Tevatron S. Burdin on behalf of CDF and DØ collaborations Aspen Particle Physics Conference 17-23 Jan 2010 Aspen, Colorado.

B Physics Results from the
Tevatron
S. Burdin
on behalf of CDF and DØ collaborations
Aspen Particle Physics Conference
17-23 Jan 2010
Aspen, Colorado
Outline
• B physics at the Tevatron
• CP violation in BS system
– S (φS) measurements
– ASL measurements
• FCNC decays
– B0K*μμ and Bsφμμ
– Bsμμ
– Bsφφ
19 Jan 2010
B Physics @ Tevatron / S.Burdin
2
B Physics at Tevatron
• b production in pp collisions
q
b
q
b
g
b
b
b
g
Flavor Creation
q
b
g
Flavor
Excitation
q
Gluon Splitting
g
• Fragmentation to all sorts of b-hadrons
• Challenge:
– Trigger
– Reconstruction
– Total inelastic cross section is
~1000 larger than b cross section
19 Jan 2010
B Physics @ Tevatron / S.Burdin
3
Triggering
• Single-muon triggers (DØ)  semileptonic
• Dimuon triggers (CDF & DØ)  Υ,J/ψX, μμX,
semileptonic+tagging
.
• Displaced track triggers (CDF)
19 Jan 2010
o +lepton  semileptonic
o x2  fully hadronic
B Physics @ Tevatron / S.Burdin
4
CP violation
• CP violation (CPV) – violation of symmetry of
physics laws in combined Charge-conjugate
and Parity transformation
P
M.C.Escher
rehcsE.C.M
C
CP
M.C.Escher
19 Jan 2010
rehcsE.C.M
B Physics @ Tevatron / S.Burdin
5
CP violation
• CP violation (CPV) – violation of symmetry of
physics laws in combined Charge-conjugate
and Parity transformation
P
M.C.Escher
rehcsE.C.M
C
CP
M.C.Escher
19 Jan 2010
rehcsE.C.M
B Physics @ Tevatron / S.Burdin
6
Bs0  Bs0 Mixing& CP parameters
Flavor eigenstates propagate according to the Schrödinger Eq.
d
i
dt
|

|

Γ

M

i

Bs (t)  
2
= 
*
0

Γ

*
Bs (t)    M  i 12
12
2

0
1
Mass
| BL  =
H
eigenstates
p2  q 2
M12  i
Γ12 
| Bs0 (t)  
2 

Γ | B 0 (t)  

M i
 s
2 
p | B   q | B 
0
s
0
s

If q/p=1  No CP violation
Bs 0
Δms = MH  ML  2 M12
ΔΓs = ΓL  ΓH  2Γ12 cosφs
Phase φ
SM
s
New Physics effects:
β
SM
s
19 Jan 2010
φs  φsSM  φsΔ
Bs0
or
 M12 
~ 0.004
= arg 

Γ
12 

 2βs  2βsSM  φsΔ
 VtsVtb* 
2
4

 arg 

ηλ

O
λ
 0.02
* 
 VcsVcb 
 
B Physics @ Tevatron / S.Burdin
7
BsJ/ψ + Ф analysis
• J/ψ + Φ is an admixture of CP(even) and CP(odd) states
• Angular analysis is used to separate the CP components and
measure the lifetimes of each component and phase φs
J/ψ rest
frame
• The angular distributions for CP-even and CP-odd
states have distinctive differences
19 Jan 2010
φ rest frame
B Physics @ Tevatron / S.Burdin
8
BsJ/ψ + Ф analysis
Bs0 t 0
19 Jan 2010
B Physics @ Tevatron / S.Burdin
Bs0
t 0
9
J/ψ+Φ data samples
• Analyzed: 2.8fb-1 per experiment
• Signal events:
– DØ: ~2000
– CDF: ~3200
19 Jan 2010
B Physics @ Tevatron / S.Burdin
10
βs and ΔΓs Results
DØ note 5928
CDF note 9787
Assuming the standard
model predictions of
βs and ΔΓs, the
probability of a deviation
as large as the level of
the observed data is
3.4%, corresponding to
2.12 Gaussian standard
deviations
19 Jan 2010
One of the possible
explanations for large
βS can be existence of
the 4th generation
(W.-S. Hou, et al., PRD
76 (2007) 016004 )
B Physics @ Tevatron / S.Burdin
11
Semileptonic Bs asymmetry
 
 




Γ Bs (t )  f  Γ Bs (t )  f
a 
Γ Bs (t )  f  Γ Bs (t )  f
s
sl
• asfs=assl=ΔΓs/Δms tan(φs)
• New Physics parameterization (A.Lenz&U.Nierste)
M12  M12
s
SM ,s
Δs  Δs e
 Δs
iφsΔ
Δms  ΔmsSM Δs  19.30  6.74ps 1  Δs

sin φ


  4.97  0.94  10

ΔΓs  2 Γ12s cos φsSM  φsΔ  0.096  0.039ps 1  cos φsSM  φsΔ
a 
s
fs
s
Γ12
SM,s
M12
SM
s
Δs
 φsΔ
3


sin φsSM  φsΔ

Δs

Δs  1 and φsΔ  0
SM:
• assl is very small in the SM: +2·10-5
• Estimate from ΔΓs, ΔMs and φs: assl=-(8.4+5.2-6.7)·10-3
19 Jan 2010
B Physics @ Tevatron / S.Burdin
12
Semileptonic Bs asymmetry
• Semileptonic samples at D0
– BsμφπX: 81 394±865 (5fb-1)
– BsμK*K: 33 557±1200 (5fb-1)
arXiv:0904.3907 (submitted to PRL)
2
 t


Direct :  Bs0 (t )    X  N f Af e st cosh s  cosM s t  2
2




2
 t


Mixed :  Bs0 (t )    X  N f Af 1  asls e st cosh s  cosM s t  2
2






 1 2d

1 d
1 d
 B (t )  f 
 B (t )  f 
2
2
 1 2d

P     Bs0 (t )  f 
P
19 Jan 2010
µφ subsample

0
s
B Physics @ Tevatron / S.Burdin
0
  B s (t )  f 
0
s
13
Semileptonic Bs asymmetry results
19 Jan 2010
B Physics @ Tevatron / S.Burdin
14
Flavor Changing Neutral
Current processes
• FCNC decays are forbidden in the tree level in the SM
– Rates are highly suppressed in SM
W-
b
uct
s
• NP allows tree level processes and enhancement in loops
b
s
l’i23
ν~
b
χ-
s
~
~
u c~ t
• Dimuons in final state allow efficient trigger
• Normalization to well known process with large statistics and similar
final state
N sig  norm f norm
BR(sig  X ) 


 BR(norm  X )
N norm  sig f sig
19 Jan 2010
B Physics @ Tevatron / S.Burdin
15
(*)
BK μμ
and Bsφμμ
• 4.4fb-1
• Normalization to J/ψ+h
where h=K,K*,φ
19 Jan 2010
B Physics @ Tevatron / S.Burdin
16
Relative BR
BR(B+K+µ+µ-)106
CDF
BR(B0K*0µ+µ-)106
BR(BSφµ+µ-)106
0.38 0.05(stat)  0.03(syst) 1.06 0.14(stat)  0.09(syst) 1.44 0.33(stat)  0.46(syst)
HFAG
0.08
0.520.07
0.15
1.050.13
N/A
CDF note 10047
Precision is comparable or better than WA
BSφµ+µ-
 1st observation!
The rarest observed BS decay!
Agrees with theoretical expectation: 1.6110-6
(C.Q.Gengand C.C.Liu, J.Phys.G29:1103-1118,2003)
Statistics is enough to measure the differential BR, K* polarisation
and Forward-Backward asymmetry
19 Jan 2010
B Physics @ Tevatron / S.Burdin
17
B0K*0µµ
Forward-Backward asymmetry
AFB (q 2 ) 
(q 2 , cos( )  0)  (q 2 , cos( )  0)
(q 2 , cos( )  0)  (q 2 , cos( )  0)
W.-S. Hou et al., PRD 77, 014016 (2008)
4th generation
19 Jan 2010
B Physics @ Tevatron / S.Burdin
18
B(s)μμ
SM:


Br(B0s→μ+μ-) = (3.6 ± 0.3)x10-9 Buras, arXiv:0904.4917
Br(B0d→μ+μ-) = (1.1 ± 0.1)x10-10 suppressed by (Vtd/Vts)2
NP: Br could be enhanced up to 100x

b
l’i23
s
19 Jan 2010
n~
l i22

B Physics @ Tevatron / S.Burdin
19
B(s)μμ analysis
•
•
•
•
CDF: 3.7fb-1
DØ: 5fb-1 (expected limit)
Normalization to B+J/ψK+
Selection optimization:
– CDF: Neural Network
– DØ: Boosted Decision Tree
19 Jan 2010
B Physics @ Tevatron / S.Burdin
20
B(s)μμ results
DØ note 5906
• DØ (expected @5fb-1):
– Br(Bsµµ)<4.3(5.3)10-8 90%(95%)C.L.
CDF note 9892
• CDF (preliminary @3.7fb-1):
– Br(Bsµµ)<3.6(4.3)10-8 90%(95%)C.L.
– Br(Bdµµ)<6.0(7.6)10-9 90%(95%)C.L.
19 Jan 2010
B Physics @ Tevatron / S.Burdin
21
History & Projection for Bsµµ
19 Jan 2010
B Physics @ Tevatron / S.Burdin
22
Br(BSφφ)
• Displaced tracks trigger
• Normalization to BSJ/ψφ
• Using 2.9fb-1 CDF observed 295±20 events and measured
Br(BSφφ)=(24.0±2.1±2.7±8.2)10-6 (consistent with SM)
http://www-cdf.fnal.gov/physics/new/bottom/090618.blessed-Bsphiphi2.9/
19 Jan 2010
B Physics @ Tevatron / S.Burdin
23
Summary
• The CP violation results from the Tevatron
show some hints of deviation from the SM
• The Tevatron FCNC analyses reached the
sensitivity necessary to test the NP
contributions to the rare B decays
• The data to be collected in 2010-2011 could
be golden for the B physics
19 Jan 2010
B Physics @ Tevatron / S.Burdin
24
Backup Slides
DZero Detector
• Spectrometer : Fiber and Silicon Trackers in 2 T Solenoid
• Muons : 3 layer system & absorber in Toroidal field
• Hermetic : Excellent coverage of Tracking, Calorimeter and
Muon Systems
Toroid &
solenoid polarity
flipped regularly
Low background
single and dimuon
triggers 
large BμX
semileptonic samples
Detector asymmetries
• Detector asymmetries were taken into account using a technique
developed for the dimuon analysis
 Aμ=(1+qγAfb)(1+γAdet)(1+qβγAro)(1+βγAβγ)(1+qβAqβ)
q – muon charge
γ – sign of muon η direction
β – toroid polarity
8 samples allow
to determine all
detector
asymmetries
CDF Detector
•
•
th
4
Generation helps!
Explains large CPV in Bs mixing
Explains the Kπ puzzle in Bu/Bd: ΔA=AK +π0-AK +π -~15%
• Baryon asymmetry due to the new CKM4 matrix could gain ~10+15!
Global fits
A.Lenz&U.Nierste
• The asl contributions are weak
B0K*0µµ
Forward-Backward asymmetry
BaBar, Phys. Rev. D79, 031102 (2009)
BELLE, Phys. Rev. Lett. 103, 171801 (2009)