FAF’05 Mission A1 Objective: Test Acoustic Rapid Environmental Assessment mechanisms. • Construct an adaptive AUV path control. • Predict ocean in real-time. • Optimize control.
Download ReportTranscript FAF’05 Mission A1 Objective: Test Acoustic Rapid Environmental Assessment mechanisms. • Construct an adaptive AUV path control. • Predict ocean in real-time. • Optimize control.
FAF’05 Mission A1 Objective: Test Acoustic Rapid Environmental Assessment mechanisms. • Construct an adaptive AUV path control. • Predict ocean in real-time. • Optimize control parameters in real-time, s.t. minimize TL uncertainty. Principle & Method Depth (m) • Adaptive AUV path control --- yoyo control Range (km) Forward Backward (m/s) (m/s) Principle & Method • Adaptive AUV path control --- yoyo control c with a threshold d • Compare z Depth (m) • Relative position to thermocline. • Relative position to upper bound and lower bound and bottom. Control parameters: • n: number of sampling points to calculate • d: threshold of c z Range (km) c z Virtual Experiment Principal Estimate MIT Ensemble of HOPS/ESSE forecasts Nowcasts at future time Data Assimilation Smaller Statistics & Acoustic model Sample variance of TL Principle & Method CTD noise Yoyo 2 Yoyo 1 R1 P.E. P.E. new OA Err. new SVP Generator TL 1,1 ..… …… Yoyo 7 Rm TL uncertainty associated with TL 1,m Yoyo 1 Implementation • Plan 7/13/2005~7/16/2005 Bravo Charlie Alpha NC Echo 2.5 km 10 6’ E 2 km ACOMM Bouy LBL transponder POOL Delta 42 35’ N Implementation & Results • Plan for 7/17/2005~7/26/2005 Optimal: n=30, d=1000 for afternoon of Jul 26 Max range=2.1km, frequency=100Hz Implementation & Results Optimal: points=30, threshold=1000 for morning 7/21/05 Max range=4.3km, frequency=100Hz Implementation & Results Optimal: points=30, threshold=0.1 for afternoon 7/21/05 Max range=2.1km, frequency=500Hz Summary Major Accomplishment: • Constructed an AUV yoyo control. • Coupled HOPS outputs, AREA simulator and optimization codes together in a simple version. • Implemented ocean prediction and control parameters optimization in real-time. Future work: • Speed up cost function computation. • Improve optimization for nonlinear, nonseparable cost function. • Stochastic optimization. Forcast Ensemble Principal Estimate CTD noise P.E. new P.E. OA Err. new SVP Generator TL 1,1 TL uncertainty associated with Rm TL 1,m R1 TL 1,1 Yoyo 1 + ……. + Yoyo 2 Yoyo 1 R1 ..… …… Yoyo 7 CTD noise Yoyo 2 Yoyo 1 cost P.E. new Rn OA Err. new SVP Generator ..… …… Yoyo 7 Rm E Esum varsum TLOAvar TLOA CDT noise, noise R1 , R 2 R n TL uncertainty associated with TL 1,m Yoyo 1 Correlation Lengths A priori error field New P.E. Error field CTD noise ith Yoyo pattern Objective Analysis Principle Estimate RAM TL Uncertainty for ith yoyo Sound Speed Generator