Ionic Transport Through Nanopores: From Living Cells to Ionic Diodes and Transistors Zuzanna S.

Download Report

Transcript Ionic Transport Through Nanopores: From Living Cells to Ionic Diodes and Transistors Zuzanna S.

Ionic Transport Through Nanopores:
From Living Cells to Ionic Diodes
and Transistors
Zuzanna S. Siwy
Department of Physics and Astronomy
University of California, Irvine
Main Object of Our Studies
Our main object of studies is a single nanopore in a polymer film
-
+
12 mm
Several nanometers, typically 2-6 nm
~ 1 mm
We study ionic transport through single conical nanopores
Outline
1. Motivation for studies of single nanopores
2. Fabrication of single nanopores by the track-etching technique.
polymer foil
heavy ion
3. Motivation for studying conically shaped nanopores.
4. Preparation of ionic devices controlling transport of ions in water solutions:
 Preparation of ionic unipolar rectifiers.
 Preparation of an ionic bipolar diode and transistor (BJT); similarities
and differences to semiconductor devices.
 On the way to make a field effect transistor for ions.
 Ionic diodes as biosensors.
5. Nanoprecipitation in nanopores and electrochemical oscillations.
6. Conclusions.
Lessons from Nature
Transport Proteins are Nature’s Nanotubes
Impermeable lipid
bilayer membrane
Membrane-Bound
Transport Proteins
Allow for highly
selective transport of
ions, sugars, amino
acids, etc. across the
lipid bilayer membrane
Biological Pores are Smart “Holes” – Very Selective
Transport of Millions of Ions per 1 s
A potassium selective channel is a very
important player in the nerve signaling.
< 1 nm
Potassium selective channel with
four K+ in the selectivity filter
(right panel).
R. MacKinnon, P. Agre 2003
E. Gouaux, R. MacKinnon, Science 310, 1461 (2005).
S. Berneche, B.Roux, Nature 414, 73 (2001).
Selectivity of L-Type Calcium Channels
(Heart Muscle Regulation)
Negative
groups COOE.W. McCleskey, J. Gen. Physiol. 113, 765 (1999)
[Ca2+] << [Na+]
W. Nonner, D. Gillespie, D. Henderson, B. Eisenberg,
J. Phys. Chem. 105, 6427 (2001);
Ca2+ and Na+ have basically
the same diameter.
PHYSICS
approach
Preparation of the Simplest Calcium Channel/Pore
Theoretical predictions: highly charged lining of the pore and small pore volume
lead to Ca2+ selectivity.
~1 e/nm2
COO-
COO-
COO- COO-
~1
COO-
COO-
e = electron charge
COO- COO- COO-
e/nm2
COO- = carboxyl group
with charge -e
Our synthetic analogue
(a synthetic hole) is indeed Ca2+ selective!
Gillespie, D., Boda, D., He Y. Apel, P., Siwy, Z.S. (2008) Synthetic Nanopores as a Test Case for
Ion Channel Theories: The Anomalous Mole Fraction Effect. Biophysical Journal 95, 609-619.
Diode - Like Characteristics of Biological Channels
A diode perfectly rectifies currents so that it flows in one direction
rectifier
I [pA]
V [mV]
diode
Y. Jiang et al. Nature 417, 515 (2002)
PHYSICS
approach
T. Baukrowitz et al. EMBO 18, 847 (1999)
Many biological channels are switches for ions
What are the Physical Requirements for Making Ionic Diodes and
Transistors? Perhaps a Basis for Ionic Electronics?
Nanopores – Studying Interactions at the Nanoscale
Nanopores have very large surface!
+ + + + + + + + + +
+ + + + + + + + +
_ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _
Nanopores give a unique possibility to control transport of ions and charged
molecules in water-based solutions.
Nanopores as Basis for Biosensors
Sub-femtoliter volume!
Very few molecules
actually fit there!
Basis for single molecule detection!
I Will Talk About..
• Preparation of various components of IONIC CIRCUITS for
ions and molecules in a water solution: urgent need for systems
that operate in water.
• For that we need: TEMPLATE - robust single nanopores with
tunable geometry and surface chemistry i.e. tunable
electrochemical potential.
Outline
1. Motivation for studies of single nanopores.
2. Fabrication of single nanopores by the track-etching technique.polymer foil
3. Motivation for studying conically shaped nanopores.
heavy ion
4. Preparation of ionic devices controlling transport of ions in water solutions:
 Preparation of ionic unipolar rectifiers.
 Preparation of an ionic bipolar diode and transistor (BJT); similarities
and differences to semiconductor devices.
 On the way to make a field effect transistor for ions.
 Ionic diodes as biosensors.
5. Nanoprecipitation in nanopores and electrochemical oscillations.
6. Conclusions.
Heavy Ions as a Working Tool
1. Irradiation with e.g. Xe, Au, U
(~2.2 GeV i.e. ~ 15% c)
Latent tracks
E. Loriot
Linear accelerator
UNILAC, GSI
Darmstadt, Germany
2. Chemical etching
1 ion  1 latent track  1 pore !
R.L. Fleischer, P.B. Price, R.M. Walker (1975)
Heavy Ions as a Working Tool
1. Irradiation with e.g. Xe, Au, U
(~2.2 GeV i.e. ~ 15% c)
E. Loriot
Linear accelerator
UNILAC, GSI
Darmstadt, Germany
2. Chemical etching
1 ion  1 latent track  1 pore !
R.L. Fleischer, P.B. Price, R.M. Walker (1975)
Tuning the Pore Shape during Etching
Vb
Vt
Vb – Rate of non-specific etching the so-called bulk etching
Vt - Rate of etching along the latent track
Recipes for cylindrical and conical nanopores:
Cylindrical pores: high Vt and low Vb; for PET 0.5 M NaOH in 70 ºC
Conical pores: low Vt and high Vb; for PET 9 M NaOH, RT
Why Do We Want to Work with Asymmetric Pores?
Tapered cone
Cylindrical pore
L
D
d
d
4L
R1 
2
d
>>
4L
R2 
dD
Example for 0.5 V, 1 M KCl, L = 10mm
d=1 nm results in current of 3.9 pA.
d=1 nm, D=2 mm, results in current of ~740 pA.
Conical Pores are Obtained by Putting Etch Solution on
One Side of Membrane and Stop Solution of the Other
Single ion irradiation
200
U
NaOH
acidic
solution
current(pA)
(pA)
Current
I
150
100
50
0
242
244
246
248
250
252
time (min)
time
(min)
Z. Siwy et al. Nucl. Instr. Meth. B 208, 143-148 (2003); Applied Physics A 76, 781-785;
Surface Science 532-535, 1061-1066 (2003).
Gold Replica of a Single Conical Pore
~ 2 – 10 nm
P. Scopece et al. Nanotechnology 17, 3951 (2006)
Electro-Stopping Technique to Prepare Double-Conical
Pores
For polyethylene terephthalate
Anode
Etch
solution
Etch
solution
9 M NaOH
9 M NaOH
Cathode
Cross – Section of Membranes with Double-Conical
Nanopores
P. Apel, Dubna
Hydrolysis of Ester Bonds with NaOH in PET Causes
Formation of COOH Groups
OHThe surface density of COOH groups was estimated to be
~ 1.0 per nm2
_ _
_
_
_
_
_
_ _
_ _ _
_ _ _
_ _ _
_ _
Outline
1. Motivation for studies of single nanopores
2. Fabrication of single nanopores by the track-etching technique.
3. Motivation for studying conically shaped nanopores.
polymer foil
heavy ion
4. Preparation of ionic devices controlling transport of ions in water solutions:
 Preparation of ionic unipolar rectifiers.
 Preparation of an ionic bipolar diode and transistor (BJT); similarities
and differences to semiconductor devices.
 On the way to make a field effect transistor for ions.
 Ionic diodes as biosensors.
5. Nanoprecipitation in nanopores and electrochemical oscillations.
6. Conclusions.
Transport Properties of Conical Nanopores
I
U
0.1 M KCl
0.1 M KCl
Single Conical Nanopores Rectify Ion Current
Current (nA) 0.6
COOH
0.3
0.1 M KCl, pH 3
-1000
-500
500
1000
Voltage (mV)
-0.3
Vb - Vt
0.1 M KCl, pH 8
-
COO
-0.6
Vt
~ 3 nm
~ 600 nm
Vb
_
_ _
_ _ _
_
_
_
_ _ _
_ _ _
_ _ _
_ _
Z. Siwy et al. Europhys. Lett. 60, 349 (2002); Z. Siwy et al. Surface Science 532-535, 1061 (2003)
Which Ions Are Transported?
PET and Kapton pores are selective for positive ions
(cations)
I
t+ ~ 0.80
__ _
_
_
_
_ _ _
U
_ _ _ _ _
_ _ _
Z. Siwy, A Fulinski, Phys. Rev. Lett. 89, 198103 (2002);
Am. J. Phys. 72, 567 (2004).
Siwy Z., Adv. Funct. Mat.16, 735 (2006).
UNIPOLAR DEVICE – mainly
pass through
Why do Asymmetric and Charged Pores Rectify
The profile of electric potential V(z) of
a cation in an asymmetric nanopore
z
Siwy Z., Fulinski A. Phys. Rev. Lett. 89, 198103 (2002); Siwy Z., Fulinski A. The American Journal of
Physics 74 (2004) 567; Siwy Z., Adv. Funct. Mat.16, 735 (2006).
Cervera, J., Schiedt, B., Ramirez, P. Europhys. Lett. 71, 35-41 (2005).
PROBLEM: Degree of Rectification of Conical
Nanopores
I (nA)
1
-3
U (V)
-2
f rec
-4
3
I  U 

I  U 
f rec  10
Ideally, from application stand point one wants a SWITCH i.e. basically
zero leakage current.
How to Make an Ionic Switch?
+ + + + + + + + + +
_ _ _ _ _ _ _ _ _ _
+ + + + + + + + + _ _ _ _ _ _ _ _
Depletion zone
H. Daiguji, P. Yang, A. Majumdar, NanoLett., 4, 137 (2005).
I. Vlassiouk, Z.S. Siwy, Nano Lett. 7, 553 (2007)
HIGH Conductance State of Nanopore
Eric Kalman
+ + + + + + + + + +
_ _ _ _ _ _ _ _ _ _
+ + + + + + + + + _ _ _ _ _ _ _ _
BIPOLAR DEVICE – current carried by both
Targeted Modification of the Tip
GOAL!
,
The negative
groups (COO-) at
the narrow opening
have to be changed
into groups with
positive charges,
e.g. NH3+
Ethylenediamine
+ EDC
Steady-State Solution of Diffusion Problem
C0
x
1.0
Targeted
modification of
the tip
c (x)
0.8
CL=0
Distribution of concentration of a
reagent introduced only on the
tip side of the membrane
0.6
aL 
c( x )  c0   1
A x 
0.4
0.2
0.0
100
200
300
400
500
x [nm]
Only the region of the pore close to the tip with high enough EDC
and amines concentration will be modified!
Modification Chemistry
Ethylenediamine
+ EDC
Succinide anhydride
+ EDC
Ethylene diamine
+ EDC, 0.1 M KCl,
pH 5.5
_ _
_ _
_
_
_ _
_
_
_
0.1 M KCl, pH 5.5
_
_
_
_ _
_
_
An Ionic Diode Made From a Nanopore
with a Positive Tip
I ( 5V )
 217
I ( 5V )
12
0.1 M KCl, pH 5.5
Current (nA)
10
8
6
4
2
0
-5 -4 -3 -2 -1 0
1
Voltage (V)
I. Vlassiouk, Z.S. Siwy, Nano Lett. 7, 553 (2007)
2
3
4
5
Positively Charged Nanopore
+ +
+ + + +
+
+ +
+ + + +
+ + +
+ +
12
Current (nA)
10
0.1 M KCl, pH 5.5
8
6
4
2
I ( 5V )
7
I ( 5V )
0
-2
-5 -4 -3 -2 -1 0
1
Voltage (V)
2
3
4
5
An Ionic Diode Made From a Nanopore
with a Negative Tip
0.1 M KCl, pH 5.5
I ( 5V )
 61
I ( 5V )
0
Current (nA)
-2
-4
-6
-8
-10
-12
-5 -4 -3 -2 -1 0
1
2
3
Voltage (V)
I. Vlassiouk, Z.S. Siwy, Nano Lett. 7, 553 (2007)
4
5
Tuning Rectification
We can measure ion rectification degree in situ during the
modification!
I. Vlassiouk, Z.S. Siwy, Nano Lett. 7, 553 (2007)
Diode Pattern Realized in a Bacterial Biopore
WITHOUT
charges
WITH
charges
Miedema, H.; Vrouenraets, M.; Wierenga, J.; Meijberg, W.; Robillard, G.;
Eisenberg, B. A Biological Porin Engineered into a Molecular, Nanofluidic Diode.
Nano Letters 7 (2007) 2886-2891.
Unipolar Diodes Were Also Prepared
10 mM KCl
Voltage (V)
R. Karnik, C. Duan, K. Castelino, H. Daiguji, A. Majumdar Nano Letters 7, 547-551 (2007).
I. Vlassiouk, S. Smirnov, Z. Siwy, ACS Nano 2, 1589 (2008)
Poisson-Nernst-Planck Modeling of Ionic Diodes
_ _ _+++
_ _ _
+++
 o  e(C  C )

zi eCi

J


D
(

C

 )
i
i
 i
k BT

Ci – concentration of positive and negative ions
 - electric potential
 - dielectric constant
Ji – flux of an ion i with charge zi
Density of charge carriers is described by the Boltzmann statistics
A Semiconductor Diode
Vs
an Ionic Diode
p-doped
electrons (-)
n-doped
Concentration, M
holes (+)
1 mm long,
0.5 e/nm2,
0.1 M KCl
0.5
0.4
0.3
K+
Cl-
0.2
0.1
0.0
480
500
520
x, nm
0.04
Voltage, V
Carrier concentration
_ _ _+++
_ _ _
+++
Voltage
0.02
0.00
Voltage
-0.02
480
500
x, nm
Numerical solutions of PNP
520
1-D Analytical Approximations for Diodes
Depletion
zone
1
ln , p
_ _ _+++
_ _ _
+++
 Na 

  0 V
N
  d
N d  N a 2e
ldep 
Va  0
a – pore radius
 - surface charge
density

doping

I open  I hgen  I egen
 keVT 
 e B  1




2
 ea  eDC
BP

V  Vo 2
I open
 
L
 2k B T 

Current
Current
Voltage

I closed  I
gen
h
I
gen
e

N.W. Ashcroft, N.D. Mermin, Solid State
Physics, Thomas Learning, 1976
Voltage
BP
I closed
3 2
a
Cbulk
 2e 2D
L
I. Vlassiouk, S. Smirnov, Z. Siwy, ACS Nano
2, 1589 (2008)
Depletion Zone in LONG Pores
+ + + + + + + + + +
_ _ _ _ _ _ _ _ _ _
+ + + + + + + + + _ _ _ _ _ _ _ _
Depletion zone
I. Vlassiouk, S. Smirnov, ACS Nano 2, 1589 (2008)
Depletion Zone in SHORT Pores
+ + + + + + + + + +
_ _ _ _ _ _ _ _ _ _
+ + + + + + + + + _ _ _ _ _ _ _ _
The depletion zone fills the whole pore, which can be treated
as a neutral pore
I. Vlassiouk, S. Smirnov, ACS Nano 2, 1589 (2008)
Opening of Short Diodes
I (nA)
-40
BP diode
charged reservoirs
BP diode
neutral reservoirs
L=2nm
L=4nm
L=8nm
L=10nm
L=12nm
L=16nm
L=2nm
L=4nm
L= 8nm
L=10nm
L=12nm
L=16nm
-20
0
A
(V)
I (nA)
-40
B
UP diode
neutral reservoirs
UP diode
charged reservoirs
L=2nm
L=4nm
L=6nm
L=10nm
L=25nm
L=2nm
L=4nm
L=6nm
L=10nm
L=25nm
-20
0
D
C
20
4
2
0
-2
-4
4
Bias (V)
Cbulk = 0.1 M KCl, charge density 0.5 e/nm2, radius 4 nm
2
0
Bias (V)
-2
-4
Preparation of Ionic Bipolar Junction: Transistor
I
V
diode P-N junctions
+
+
+
+
+ +
+ + +
+ + +
Cl-
+
+
+
+ + +
K+
Cl-
+ + +
+ + +
P. Apel, Dubna
Step-by-Step Modifications
_ _ _
_ _
__ _ _
0.1 M KCl
0.1 M KCl
_
_
_
_
_
_ _
_ _
Current (pA)
(a)
400
200
0
-200
-400
-4
-2
0
2
4
Voltage (V)
(b)
+ + _ _ _ _ _
+ _
0.1 M KCl
0.1 M KCl
_ _ _ _ _
_
+
+ +
Current (pA)
0
-400
-800
-1200
-4
-2
0
2
4
Voltage (V)
+ + _ _ +++
+ _
0.1 M KCl
0.1 M KCl
_ _ _ _
+
+
+ +
+
Current (pA)
(c)
20
10
0
-10
-20
-4
E. Kalman, I. Vlassiouk, Z. Siwy, Advanced
Materials 20, 293 (2008).
-2
0
2
Voltage (V)
4
Performance of Ionic BJT
Current (pA)
200
100
0
0.5 M
0.25 M
0.1 M
-100
-200
-4
-2
0
2
+ + _ _ +++
+ _
0.5 M KCl
0.5 M KCl
_
_
_
_
+
+
+ +
+
4
Voltage (V)
Salt concentration determines the potential in the pore and thus the
leakage current level in BJT
Performance of Ionic BJT – pH response
+
+ + +
+ +
+ + +
+ + +
p
n
+
+ +
+ + +
p
+ + +
+ + +
60
+ ++
+ + +
+++
+++
+ +
+ + + +
+ + +
+ + +
“+ 0 +”
junction
200
“+ - +”
junction
20
0
-20
pH 8.0
pH 7.0
-40
-60
-4
-2
0
2
Voltage (V)
E. Kalman, I. Vlassiouk, Z. Siwy, Advanced
Materials 20, 293 (2008).
4
Current (pA)
Current (pA)
40
100
0
pH 5.4
pH 6.0
pH 7.0
pH 8.0
pH 9.0
-100
-200
-4
-2
“0 - 0”
“0 - 0”
junction
0
Voltage (V)
2
4
Ionic Gated Channel with Electrically Addressable
Gate – On the Way to Make FET
Tektronix AFG320
Function Generator
Ti Adhesion Layers
_
Voltage
+
Keithley 6487
Picoammeter
Voltage
_ +
Current
Out
SiO2 Insulating Layer
Au Gate Electrode
Ground
Positive Bias
Current Input
12 mm PET
Gate Electrode
Membrane
Faraday Cage
Not to scale
0.1 M KCl
0.1 M KCl
In
Gated Conical Nanopore
Current (nA)
16
Air
0V
- 0.2V
-0.4V
-0.6V
-0.8V
-1.0V
-1.0
0V
12
8
4
-1.0 V
-0.5
0.5
-4
1.0
Voltage Um (V)
Applying negative gate voltage to the gate causes suppression of ion currents
Gated Conical Nanopore
Concentration depletion
induced by a gate electrode
-
+
-
-
-
-
+
Active
exclusion
zone
-
+
-
-
-
+
Bias
voltage
E. Kalman, O. Sudre, I.
Vlassiouk, Z. Siwy, Analytical
and Bioanalytical Chemistry
394, 413 (2009)
-
+
-
+
- +- -
-
+
+
-
-
-
-
+
- - -
- +
+
+ -
Silica layer
Gold
-
+
-
+
-
+
- -
-
- + + + + + +
layer
+ -- +
- + +
- + 10nm
+
+
+
- +
+
+
+
- + +
50nm
50nm
+
+ + -
Outline
1. Motivation for studies of single nanopores
2. Fabrication of single nanopores by the track-etching technique.
3. Motivation for studying conically shaped nanopores.
4. Preparation of ionic devices controlling transport of ions in water solutions:
 Preparation of ionic unipolar rectifiers.
 Preparation of an ionic bipolar diode and transistor (BJT); similarities
and differences to semiconductor devices.
 On the way to make a field effect transistor for ions.
 Ionic Diodes as Biosensors
5. Nanoprecipitation in nanopores and electrochemical oscillations.
6. Conclusions.
Summary: Tuning Current-Voltage Curves Of
Nanopores by the Surface Charge
Surface charge patterns
AND
Corresponding current-voltage curves
I
U
I
I
U
Changes of the surface pattern are
induced upon binding of an analyte
I Vlassiouk, T, Kozel, Z.S. Siwy, JACS 131, 8211-8220.
U
Prototype of the Sensor for Avidin and Streptavidin
_
_
_
_
_
_
_
_
+
_
_
_
Current
+ +
Avidin
(+)
_
_
biotin
_
_
_
_
_
KCl as the background electrolyte
Current
Voltage
Voltage
+
Prototype of the Sensor for Avidin
I
I
U
U
10 mM KCl
10 mM KCl
avidin
10 mM KCl
Current (nA)
8
6
With avidin
0.5 mM, 2 h
4
Nanopore with the
tip modified with
biotin;
10 mM KCl, pH 7.0
2
-6
-4
-2
-2
-4
With biotin
-6
2
4
6
Voltage (V)
Tip modified with biotin
Avidin on top
10 mM KCl
avidin
Prototype of the Sensor for Streptavidin
_
_
biotin
_
_
+
_
_
_
_
Streptavidin, pI ~ 6
_
+
_
pH < 6
pH > 6
Current (nA)
pH 4.2
0.4
-2
-1
1
-0.4
pH 5.8
pH 8.0 -0.8
-1.2
2
Voltage (V)
10 mM KCl
Rectification degree
I(+2V)/I(-2)
0.8
4
3
2
pI
1
4
5
6
pH
7
8
GOAL
Label-free sensor for antigens that are bioterrorism agents
Prototype: Monitoring infection with Bacillus anthracis
www.wikipedia.org
Bacillus anthracis
Capsule of poly-g-glutamic acid (gDPGA)
thus it is heavily negatively charged
Infection with Bacillus anthracis results in gDFGA in the blood at the levels that
are higher than 20 ng/ml (~10 pM gDFGA).
Sensor for a Real “Stuff” – pI of the mAb for gDPGA
_
_
_
_
_
_
_
+
_ + +
_
pH < pI
Monoclonal
antibody for
polyglutamic acid
Prof. T. Kozel,
University of
Nevada
(F2G26)
_
_
_
_ 0 0
_
pH 4.8
8
4
pH 6.0
-2
_
_
pH > pI
Current (nA) 16
-4
_
0
pH ~ pI
12
_
2
4
Voltage (V)
pH 8.0
-4
I Vlassiouk, T, Kozel, Z.S. Siwy, JACS 131, 8211-8220.
_
_ _
Sensing Signal
Current (nA)
_
_
16
pH 4.8
Current (nA)
12
_
8
_
_
-4
4
-2
pH 8.0
2
-4
Monoclonal
antibody for
polyglutamic acid
-2
2
-10
-20
pH 6.0
pH 6.0
4
pH 8.0
100
10
Before adding gDPGA
1
0.1
After adding gDPGA
0.01
4
5
6
pH
7
4
Voltage (V)
_
_
_
-30
Voltage (V)
Rectification degree I(+5V)/I(-5)
_
-4
+
polyglutamic
acid
pH 4.8
8
_
-40
_
_
Outline
1. Motivation for studies of single nanopores
2. Fabrication of single nanopores by the track-etching technique.
3. Motivation for studying conically shaped nanopores.
4. Preparation of ionic devices controlling transport of ions in water solutions:
 Preparation of ionic unipolar rectifiers.
 Preparation of an ionic bipolar diode and transistor (BJT); similarities
and differences to semiconductor devices.
 On the way to make a field effect transistor for ions.
 Ionic Diodes as Biosensors.
5. Nanoprecipitation in nanopores and electrochemical oscillations.
6. Conclusions.
Conductivity Cell Used for Recording
Current-Voltage Curves
I
U
0.1 M KCl
+ Ca2+
0.1 M KCl
+ Ca2+
[Ca2+] << [K+] or
[Mg2+] << [K+] or
[Co2+] << [K+]
Precipitation in a Nanopore
_
[Mg2+] [OH-]2 >> Ksp
Mg(OH)2
A ‘plug’ can be created
inside a nanopore!!
[Mg2+] [OH-]2 <Ksp=5.6 10-12
0.1 M KCl – background electrolyte
• Ionic concentrations inside a nanopore depend on the surface
charge and applied voltage
•Concentration of cations in a negatively charged pore can be
much higher than in the bulk.
Evidence for the Precipitation, Mg(OH)2
B
-500
KCl
50 mM
-1000
-1500
-2000
5.0 mM Mg2+
-1000
-500
0
500
A
-1000
-2000
20 s
0.5 mM Mg2+
A
0
Mg2+
1000
B
0
Current (pA)
Current (pA)
0
Current (pA)
500
-100
-200
40 s
Voltage (mV)
Mg(OH)2 Ksp = 5.61·10-12
M. Powell et al. Nature Nanotechn. 3, 51 (2008)
Modeling by the Poisson-Nernst-Planck Equations
Products of ionic activities at -1 V
are above the solubility product
for Mg(OH)2
Products of ionic activities at +1 V
are below the solubility product
Modeling by the Poisson-Nernst-Planck Equations
Products of ionic activities are very strongly
voltage-dependent!
Evidence for the Precipitation (I) CaHPO4
CaHPO4 Ksp  2 ·10-7
Current (nA)
2
1
0
0.1 M KCl
-1
0.1 M KCl + 0.1 mM CaCl2
-2
0.1 M KCl + 0.4 mM CaCl2
-3
0.1 M KCl + 0.7 mM CaCl2
-4
-2
-1
0
1
2
pH 8, 2 mM PBS
Voltage (V)
Z. Siwy et al. Nano Lett. 6 (2006) 473-477.
Pore opening 5 nm
Evidence for the Precipitation
600
-600
0.1 mM Ca2+
0.5 mM Ca2+
1.0 mM Ca2+
A
-1000 -500
0
500
Current (pA)
-400
KCl
C
B
0
-200
F
E
0.1 mM PBS
0.2 mM PBS
-400
-600
1000
1.0 mM PBS
D
-1000
Voltage (mV)
Current (pA)
0.2 mM
Ca2+
200
Current (pA)
0
5.0 mM PBS
-500
0
500
1000
Voltage (mV)
0
0
-400
-200
-400
10 s
A
D
-800
-600
0
-200
B
-400
Current (pA)
Current (pA)
20 s
0
-400
2s
C
-400
400 ms
Current (pA)
0
-200
E
-200
400 ms
Current (pA)
Current (pA)
200
-200
400
2 mM
PBS
400
0
-200
F
-400
1s
Current (pA)
Evidence for the Precipitation (II), CoHPO4
-600
A
KCl
0.01 mM Co2+
0.10 mM Co2+
-800
-1200
20 s
1
0
-200
-400
20
-1.0
-0.5
0.0
Voltage (V)
0.5
40
Time (s)
1.0
1
0
IN 0
(pA)
-1600
-400
20 s
IN 0
(pA)
-400
-200
B
Current (pA)
0
Current (pA)
Current (pA)
400
0
-200
-400
4s
32
36
Time (s)
CoHPO4 Ksp  1 ·10-7
M. Powell et al. Nature Nanotechn. 3, 51 (2008)
Singing of Divalent Cations
4
pA
2
0
1
2
3
0.1 M KCl + 0.1 mM Co2+
4
0
IN 0
(pA)
IN 0
(pA)
pA
0.1 M KCl + 0.1 mM Ca2+
-200
-400
20 s
-400
1s
0
48
50
Time (s)
Ca2+
52
20
Time (s)
Co2+
40
Application of the System with Calcium/Cobalt to Build
Stochastic Sensors?
Detecting Neomycin
Detecting Spermine
Conclusions
We have a lot of fun doing research with nanopores!
1. Unipolar and Bipolar ionic diodes were prepared on the
basis of conical nanopores with tailored surface
chemistry.
2. The principle of operation of the bipolar diode is
analogous to that of a bipolar semiconductor diode.
SIWY GROUP
Dr. Dragos
Constantin
Alumni
Eric Kalman
Graduate students
Dr. Ivan
Vlassiouk
Matt Powell
Matt Davenport
Laura Inees –
IM-SURE and
UROP Fellow
Mike Chiang,
MCSB student
Catherine Smith
Gael Nguyen
Acknowledgments
UC Irvine
• Prof. Clare Yu
• Prof. Craig Martens
• Prof. Reg Penner
• Prof. Thorsten Ritz
• Prof. Ken Shea
• TEMPO group (Prof. Steve White, Prof. Doug
Tobias
• Prof. Thomas Kozel, University of Nevada
• Prof. Vicente Aguillella
• Prof. Robert S. Eisenberg, Rush Medical College, Chicago
• Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt, Germany
• Dr. Christina Trautmann, GSI, Germany
• Dr. Olivier Sudre, Teledyne & Imaging, Thousand Oaks
• Prof. S. Smirnov, New Mexico State University
A.P. Sloan Foundation
RCE Pacific Southwest
ACS Petroleum Research Fund
Institute for Complex Adaptive Matter
Institute for Surface and Interface Science