Quantitative PCR Bioinformatics & Gene DiscoveryWilhelm Johannsen Centre for Functional Genome Research.
Download ReportTranscript Quantitative PCR Bioinformatics & Gene DiscoveryWilhelm Johannsen Centre for Functional Genome Research.
Quantitative PCR Bioinformatics & Gene Discovery 2007 Wilhelm Johannsen Centre for Functional Genome Research QPCR & Gene discovery in the Post-genomic Era • The human genome is sequenced, then why go gene discovering? • Other genomes to work on ! • Gaps in the human genome remain • Not all human genes have yet been identified • Not all human expressed sequences are mapped to the DNAgenome • Splice-variants or aberrant composite proteins • Novel functions or relations assigned to old proteins • Non-coding RNA Wilhelm Johannsen Centre for Functional Genome Research Overview • What is PCR? • Quantitation of gene expression • Methodology • Experimental design • Problems • Applications at WJC Wilhelm Johannsen Centre for Functional Genome Research What is PCR? • • • A PCR (Polymerase Chain Reaction) is a highly specific, enzymatic process, where a well defined DNA sequence is amplified exponentially The process use a simple nonisothermal enzymatic reaction using primers nucleotides & a thermostable DNA-polymerase Ideally, after 40 cycles, one starting copy of a gene would yield 240 copies of that DNA fragment, i.e., ~1.1x1012 copies Yields μg worth of DNA, plenty to be able to sequence, clone and visualize on an agarose gel 90 Extension 80 Temperature • Denaturation 100 70 60 50 Annealing 40 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 Cycle Some graphics modified from Andy Vierstrate, http://users.ugent.be/~avierstr/principles/pcr.html Wilhelm Johannsen Centre for Functional Genome Research Quantitation of gene expression • Quantitation of gene expression can supply important biological information about gene function and relationships • Quantitation of gene expression may discriminate between normal and diseased states • Always remember that high or low gene expression not necessarily indicate high/low protein levels Wilhelm Johannsen Centre for Functional Genome Research Quantitation of gene expresion -- Immobilised Methodology-• Northern blotting – – – – – – Gel-based Relatively inexpensive equipment Involves hybridisation steps Time, sample & labor intensive Few samples, target genes to be handled simultaneously Simple data calculations • Micro-arrays – – – – – – Tiao, Hobler, et al.: JCI, 99, 163-168, 1999 Chip-based Expensive equipment Involves hybridisation steps Technology time and labor intensive Many samples, target genes to be handled simultaneously Extensive data calculations http://www.well.ox.ac.uk/genomics/facilitites/Microarray/Welcome.shtml Wilhelm Johannsen Centre for Functional Genome Research Quantitation of gene expresion --PCR Methodology-• Semi-quantitative PCR – – – – – – Gel-based Inexpensive equipment Involves hybridisation steps Time, sample & labor conservative Multiple samples but few target genes simultaneously Simple data calculations Schulze, Hansen et al, Nature Genet. 1996 • Real-time PCR (QPCR) – – – – – – Gel-free? Expensive equipment Involves hybridisation steps Time, sample & labor conservative Multiple samples but few target genes simultaneously Extensive data calculations Wilhelm Johannsen Centre for Functional Genome Research QPCR - why ? • • • • • • • • • • Conservative (10-50 ng template) Sensitive Broad dynamic range Rapid (1-2 hrs) Relatively inexpensive (DKK 5-15/sample) Multiple samples can be processed simultaneously (1->96) Possible multiplexing Unambiguous results Gradual expression differences can be detected Gel-free Wilhelm Johannsen Centre for Functional Genome Research What is QPCR? • Denaturation 100 PCR as usual 90 Optional Melting curve generation Temperature • Additional quantitation step Quantitat e 70 60 Annealing 50 40 0,14 0,12 Fluorescence • Extensio n 80 Melting curve Plateau 0,1 0,08 0,06 0,04 0,02 Exponential Signal noise 0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 Cycle Wilhelm Johannsen Centre for Functional Genome Research Semi-quantitative endpoint PCR vs. QPCR 0,14 Fluorescence 0,12 0,1 0,08 0,06 C(t)=11 C(t)=18.5 0,04 0,02 0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 Cycle Wilhelm Johannsen Centre for Functional Genome Research Melting curves – circumvention of ’dirty’ reactions 100 90 Temperature 80 70 60 50 40 Wilhelm Johannsen Centre for Functional Genome Research Pro’s & con’s Endpoint analysis • • • • Simple Inexpensive Gel-based system ’Yes/No’ quantitation • Multiplexing possible • Broad enzyme range • Variable cycle number QPCR • • • • • • • • • Little more complex Slightly More expensive Gel-free system Relative quantitation Absolute quantitation Multiplexing possible Clean PCR ? Limited enzyme range Invariable cycle number Wilhelm Johannsen Centre for Functional Genome Research Overview • What is PCR? • Quantitation of gene expression • Methodology • Experimental design • Problems • Applications at WJC Wilhelm Johannsen Centre for Functional Genome Research Chemistry 1 • • • • • • • SYBR green (quantitation, melting curve) Taqman Assay (quantitation, genotyping, multiplex) Hybridization probes (quantitation, genotyping) Molecular beacons (quantitation, genotyping) Scorpions (genotyping) Light-Up probes (quantitation, genotyping) Ampliflour universal detection system (quantitation, multiplex) • LUX fluorogenic primers (quantitation, multiplex) • Universal Probe Library (quantitation) Wilhelm Johannsen Centre for Functional Genome Research Selected QPCR strategies SYBR Hyb. probes Taqman Lux Wilhelm Johannsen Centre for Functional Genome Research Chemistry 2 • Commercially available kits • • • • Variation in kit quality Lower batch-to-batch variation Limited range of thermostable polymerases For ’difficult’ fragments kits may be a poor choice • Do it yourself (DIY) kit • Select your own polymerase • Relatively simple to set-up • Higher Batch-to-batch variation Wilhelm Johannsen Centre for Functional Genome Research Rapid DIY kit 0.5X SYBR 1X SYBR 2.5X SYBR 5X SYBR Wilhelm Johannsen Centre for Functional Genome Research Overview • What is PCR? • Quantitation of gene expression • Methodology • Experimental design • Problems • Applications at WJC Wilhelm Johannsen Centre for Functional Genome Research Experimental design • Search WWW for good ideas & help • Always design the experiment before actually doing it & equally important, stick to it!! • Decide how you want to calculate your results • Take the time to create spreadsheets that you will use for the calculations!! Wilhelm Johannsen Centre for Functional Genome Research Wilhelm Johannsen Centre for Functional Genome Research QPCR calculation strategies • Serial dilution of ’known’ standards (standard curves) • ∆c(t) • ∆∆c(t) • PCR efficiency Wilhelm Johannsen Centre for Functional Genome Research QPCR-at-a-glance - WJC-NSGene SOP • • • • • • • RNA extraction/purchase RNA quantitation DNAse treatment Test for DNA contamination RNA quantitation Reverse transcription Prepare primers spanning intron (if possible) • QPCR gene of interest (GOI) • QPCR house keeping gene (HKG) • Calculation, quality control & normalisation Wilhelm Johannsen Centre for Functional Genome Research Software • • • • • • • • • • GeNorm (Freeware/shareware) REST (Freeware/shareware) qBase (Freeware/shareware) Genex qGene (Freeware/shareware) SoFAR (Commercial) Bestkeeper (Freeware/shareware) LinReg PCR (Freeware/shareware) Dart PCR DATAN (Commercial) Wilhelm Johannsen Centre for Functional Genome Research Spreadsheets • Use a standardized spreadsheet for calculations – it pays off in the long run and saves you a lot of aggravation!! • Use somebody else’s spreadsheet • Build your own spreadsheet around somebody else’s basic work – it saves time! • Create your own spreadsheet from scratch Wilhelm Johannsen Centre for Functional Genome Research WJC-NSgene Spreadsheet • Bestkeeper normalisation (Pfaffl, MW. 2004) • Multiple calculation strategies • • • • • Selective removal of: Kinetic outliers (Bar, T. 2003) Data points with aberrant melting curves Data points with large sample variation Data points outside standard curve Wilhelm Johannsen Centre for Functional Genome Research Overview • What is PCR? • Quantitation of gene expression • Methodology • Experimental design • Problems • Applications at WJC Wilhelm Johannsen Centre for Functional Genome Research Selected QPCR problems • • • • RNA quantity/quality Quantitation of RNA Reverse transcription QPCR itself • Standard curves • Normalisation Wilhelm Johannsen Centre for Functional Genome Research Quantitation of RNA • Spectrophotometric determination • Advantages – Cheap – Fast • Disadvantages – Inaccurate • Fluorimetric determination • Advantages – More accurate – More sensitive • Disadvantages – More expensive – Slower Wilhelm Johannsen Centre for Functional Genome Research RNA quality • RNA quality - a key item for successful QPCR • RT or PCR inhibitors may be carried over during extraction of RNA • Always store RNA at -80 C • Wear gloves • Assess RNA quality best as possible • Agarose gels – rule of thumb: 2 bands; upper twice as intensive as lower • Chip (e.g. Agilent Bioanalyzer) Wilhelm Johannsen Centre for Functional Genome Research Reverse Transcription • Reverse transcription as a major cause for QPCR inconsistency: • • • • • • RNA extraction RT time Choice of Reverse transcriptase Amount of RNA transcribed Inhibition by Reverse Transcriptase Potentially sequence dependent Wilhelm Johannsen Centre for Functional Genome Research Reverse transcription 1 - RT time 110 100 1003-90 1103-90 96 100 100 82 80 72 70 63 % expression 90 60 50 40 1003-50 1103-50 1203-50 1203-90 • Same RNA • 3 RT-reactions • Same RT-mix • 50 min RT, average of 3 genes • 90 min RT, average of 3 genes Wilhelm Johannsen Centre for Functional Genome Research Reverse transcription 2 - RT variation 110 NSG3 B2M G6PD 100 % expression 90 80 70 60 50 40 1003 • • • 1103 Same RNA 3 RT-reactions-3 different days Different RT-mixes Wilhelm Johannsen Centre for Functional Genome Research 1203 Reverse transcription 5 - Summary • Find optimal Time for RT reaction • If possible use same RNA extraction method • Prepare adequate amounts of cDNA to perform all experiments simultaneously • Only compare results from different RT reactions with some scepticism Wilhelm Johannsen Centre for Functional Genome Research cDNA stability • cDNA is remarkable stable when stored at appropriate conditions (-20 C) • No detectable degradation for > 12 months with repeated thawing/freezing cycles • Check cDNA panel occasionally to verify quality Wilhelm Johannsen Centre for Functional Genome Research PCR itself as a problem • The PCR reaction • • • • • Template concentration Inhibitors Optimization Plastware Inadequate thermocycler • The operator • Pipetting errors • Setting up reactions • Wrong PCR programs Wilhelm Johannsen Centre for Functional Genome Research Standard curves • Serial dilutions of known sequences used for ‘metering’ of unknown concentrations • Complexity much different from real life! • Simple to construct • Clones • Purified PCR products • Dynamic range might be compromised Wilhelm Johannsen Centre for Functional Genome Research Dynamic range 1,E+00 1,E-02 1,E-04 1,E-06 1,E-08 y = 9,483e -0,6993x 1,E-10 R2 = 0,9991 1,E-12 0 10 20 30 40 Wilhelm Johannsen Centre for Functional Genome Research 50 Fuzzing ’bout dynamic range & target genes 1,E+00 1,E-02 1,E-04 1,E-06 1,E-08 y = 9,483e -0,6993x 1,E-10 R2 = 0,9991 1,E-12 0 10 20 30 40 Wilhelm Johannsen Centre for Functional Genome Research 50 Some ways to circumvent ‘short’ standard curves • Resuspend standard template in a suitable carrier (e.g., tRNA, bacterial DNA, linear acrylamide), to increase complexity • Decrease reaction volume • Increase amount of template in PCR reaction • Change plastware, transparent white plates increase signal strength • Prepare new primers • Change enzyme/kit • Further optimize PCR reaction (e.g., Magnesium etc.) • Despair…….. Wilhelm Johannsen Centre for Functional Genome Research Standard curve 1 - Weirdo 41103 041103Dil 51103 cDNA data 261103 data -1 -3 -5 -7 -9 -11 -13 y = -0,263x + 1,0546 R2 = 0,9863 -15 0 5 10 15 20 25 30 35 Wilhelm Johannsen Centre for Functional Genome Research 40 45 Standard curve 2 - Weirdo 41103 -1 041103Dil 51103 cDNA data -3 261103 data -5 -7 -9 -11 -13 y = -0,2472x + 0,9779 R2 = 0,9901 -15 0 5 10 15 20 25 30 35 Wilhelm Johannsen Centre for Functional Genome Research 40 45 Standard curve 3 - Weirdo 41103 -1 041103Dil 51103 cDNA data -3 261103 data -5 -7 -9 -11 -13 y = -0,2433x + 0,8723 R2 = 0,9858 -15 0 5 10 15 20 25 30 35 Wilhelm Johannsen Centre for Functional Genome Research 40 45 Standard curve - Summary • Standard curves can be extended and complexity restored by various additives • Be aware of potential PCR inhibitors! Wilhelm Johannsen Centre for Functional Genome Research Selected QPCR problems • • • • RNA quality Quantitation of RNA Reverse transcription QPCR itself • Standard curves • Normalisation Wilhelm Johannsen Centre for Functional Genome Research Why normalise? • Correct for differences in input template • Initial RNA quantitation • Pipetting errors • Cdna synthesis • ’Housekeeping’ genes used for this purpose should be: • Expressed ubiquitously • Expressed at even levels in all tissues examined • Good ’Housekeeping’ genes – do they exist? Wilhelm Johannsen Centre for Functional Genome Research Normalisation is a relative problem • Single or few related tissues • Many Gene of interest (GOI) • Need few HKGs • Multiple tissues • Many GOI • Need many HKGs Wilhelm Johannsen Centre for Functional Genome Research WJC/NsGene cDNA panel Adrenal gland Bone marrow Cerebellum Adult brain Heart Kidney Liver Lung Placenta Prostate Pancreas Spinal cord Salivary gland Skeletal muscle Spleen Testis Thymus Thyroid Trachea Uterus Colon Small intestine Fetal brain Fetal liver Corpus callosum Amygdala Caudate nucleus Hippocampus Thalamus Pituitary gland Wilhelm Johannsen Centre for Functional Genome Research ‘Semi-related’ tissues 5 B2M ALAS1 PBGD G6PD 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 Caudate nucleus Amygdala Corpus callosum Hippocampus Thalamus Wilhelm Johannsen Centre for Functional Genome Research Pituitary Genorm’ed HKG factor B2M 2,5 ALAS1 PBGD Genorm 2 1,5 1 1,3 0,9 1,0 1,1 1,0 0,8 0,5 0 Caudate nucleus Amygdala Corpus callosum Hippocampus Thalamus Wilhelm Johannsen Centre for Functional Genome Research Pituitary U te ru uc s os a Sm ll in al in li g nt es ti n Sp e in al co rd Fe ta ll iv er Fe ta lb ra in Pa nc re as PBGD /m ALAS1 w HPRT Wilhelm Johannsen Centre for Functional Genome Research ol on B2M tis Th ym Th us yr oi d gl an d Tr ac he a cox1a Te s Lu ng Pl ac en ta Pr o st Sa at liv e ar Sk y gl el an et al d m us cl e Sp le en Li ve r co41a C ea r ra in t ki dn ey H B dr en al gl B on an e d m ar ro C w er eb el lu m A Multi-tissue HKG quagmire! 1000 ATP6A G6PD 373 fold difference 100 10 1 Re tin Br a Do Pu ai rs t n al Su a m ro b. en ot N G igr an a Fe g li o t Ce al l n re i v W be er ho llu le m Fe Br ta ain l Fe bra ta in ll iv e He r ar Lu t Pl n g ac Sa Pr enta o Sk l iva sta e l ry te et al glan m us d Sp cle le Th en y Tr mus ac h Ut ea er Sm u a l Co s lI n t lon es St tin e o Pa m ac nc h re a K Sp id s in ne al y co Te rd st is 12 8 Bestkeeper 10 Panel 1 6 fold difference (fold) Panel 2 9 fold difference 6 4 2 0 Wilhelm Johannsen Centre for Functional Genome Research QPCR-at-a-glance - WJC/NSGene SOP • • • • • • • • • RNA extraction/purchase RNA quantitation DNAse treatment Test for DNA contamination RNA quantitation Reverse transcription Prepare primers spanning intron (if possible) QPCR GOI QPCR HKG • Run 10-12 different HKGs • Use the Bestkeeper to select HKGs used • Calculation, quality control & normalisation • Use Bestkeeper values Wilhelm Johannsen Centre for Functional Genome Research Normalisation - Summary • Huge variation in expression of HKGs • Finding suitable HKGs can be troublesome • For most purposes using a single HKG is insufficient • Using statistics and geometric averages appear to be best solution for multiple tissue expression analysis Wilhelm Johannsen Centre for Functional Genome Research Overview • What is PCR? • Quantitation of gene expression • Methodology • Experimental design • Problems • Applications at WJC Wilhelm Johannsen Centre for Functional Genome Research What’s QPCR good for? • Screening transfectant cell lines for best ’expressors’ • Verification of microarray data • SiRNA studies • ’What happens if?’ studies • Multiple tissue expression studies • Should be an integral part in gene discovery • Potential in disease diagnostics Wilhelm Johannsen Centre for Functional Genome Research A Gene Hunting Strategy • Identify novel entity • Bioinformatics • Wet biology • Verify that gene is expressed • RT-PCR • Assess Expression profile • QPCR • Obtain full-length cDNA • Cloning • PCR • Express novel entity in appropriate cell system • Select best cell line(s) • QPCR • Characterize novel entity further • QPCR Wilhelm Johannsen Centre for Functional Genome Research Best transfectant GOI standard curve GAPDH standardcurve 1,E-02 1,E-02 1,E-04 1,E-06 1,E-06 1,E-08 1,E-08 y = 0,7906e -0,6716x 1,E-10 1,E-10 y = 1.5297e -0.6892x R2 = 0.9993 0 5 10 R2 = 0,9987 Fold expression (GAPDH) 1,E-12 1,E-12 Fold expression (Log) Fluorescence 1,E-04 15 20 25 30 35 40 0 5 10 15 20 25 30 1,E+07 1,E+05 1,E+03 1,E+01 1,E-01 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 Sample # Wilhelm Johannsen Centre for Functional Genome Research 35 40 Microarray verification • Dissected human Fetal tissues • Microarray data evaluated • Novel genes with increased expression levels >43%, were selected (~40 genes) • 9 genes selected for primary verification • 4 known tissue specific genes were used as controls to verify the experimental setup Wilhelm Johannsen Centre for Functional Genome Research Controls 1800 742 184 181 3 10w-B 10w-D** 10w-C 10w-A 10w-A 9.5w-A 3 5 5 3 7w-B 8w-A 8w-A 8w-C 8w-C 8w-C 2 8w-D** 3 6w-B 5.5w-A 94 65 54 58 41 152 23 24 28 18 22 98 54 56 49 9 1 2 5 7 3 10w-B 10w-D** 10w-C 10w-A 10w-A 9.5w-A 8w-D** 8w-D** 8w-D** 8w-C 8w-C 8w-C 8w-A 8w-A 7w-B 6w-B 5.5w-B 5.5w-A 5.5w-A 3 5.5w-B 3 5w-A+B 5.5w-B 4 10w-B 10w-D** 10w-C 10w-A 10w-A 9.5w-A 8w-D** 8w-D** 8w-C 8w-D** 8w-C 5.5w-B 6w-B 7w-B 8w-A 8w-A 8w-C 1 7 3 2 2 2 2 12 3 6 7 9 39 5.5w-B 5.5w-A 5.5w-B 5.5w-A 12 16 2 5w-A+B 2 8 Wilhelm Johannsen Centre for Functional Genome Research 8w-D** 16 5.5w-B 5.5w-A 60,0 8w-D** 2 6 5.5w-B 2 5.5w-B 2 5w-A+B 342 147 20,0 1 1 10w-B 10w-D** 10w-C 10w-A 10w-A 9.5w-A Control 4 Control 3 524 127 1 51 2 8w-D** 8w-D** 8w-C 8w-D** 3 8w-C 8w-C 2 4 8w-A 8w-A 2 7 7w-B 6w-B 5.5w-B 5.5w-B 5.5w-B 70,0 250 573 338 427 202 58 3 6 5.5w-A 5.5w-A 7 5w-A+B 30,0 100 10,0 50 5 3 80,0 300 40,0 150 90,0 350 50,0 200 100,0 400 949 661 800 1078 1885 600 1000 0,0 0 1311 1200 0 0 81 200 800 1400 400 600 1000 1600 1200 2000 200 400 Control 2 Control 1 Microarray verification 396 92 40 44 50 10w-B 10w-D** 10w-C 10w-A 84 74 34 40 4 10w-A 59 8w-D** 1 9.5w-A 8w-D** 8w-D** 8w-C 8w-C 6w-B 27 18 18 19 22 19 8 10 11 10w-B 10w-D** 10w-C 10w-A 10w-A 9.5w-A 8w-D** 8w-D** 8w-D** 8w-C 8w-C 8w-C 8w-A 8w-A 7w-B 5.5w-B 6w-B 5.5w-B 5 9 5.5w-B 8 9 5w-A+B 5.5w-A 5.5w-A 5.5w-B 5.5w-B 5.5w-B 6w-B 7w-B 8w-A 8w-A 8w-C 8w-C 8w-C 8w-D** 8w-D** 8w-D** 9.5w-A 10w-A 10w-A 10w-C 10w-D** 10w-B 5w-A+B 5.5w-A 5.5w-A 10 1 10 2 1 1 1 1 2 1 1 1 Wilhelm Johannsen Centre for Functional Genome Research 1816 90,0 301 411 212 8w-C 8w-A 10 8w-A 54 43 5.5w-B 7w-B 36 5.5w-B 108 34 5.5w-A 5.5w-B 17 5.5w-A 6 4 3 2 2 2 10 89 66 60 8 0 0 5w-A+B 14 90 13 80 12 4 4 3 20 106 10w-B 10w-D** 10w-C 10w-A 10w-A 9.5w-A 8w-D** 8w-D** 8w-D** 8w-C 8w-C 8w-C 8w-A Gene 3 Gene 2 231 5 1 2 3 8w-A 7w-B 6w-B 70 10 1196 23 9 7 9 3 5.5w-B 5.5w-B 5.5w-A 5.5w-B 3 5.5w-A 7 6 5w-A+B 30 5 100 15 0 4 0,0 797 40,0 1810 100,0 1000 41 50,0 2000 94 65 24 28 18 20,0 54 58 60,0 1500 70,0 500 10,0 22 30,0 Gene 1 Control 4 80,0 Microarray verification 94 50 70,0 45 15 9 6 4 10w-B 13 11 12 12 10w-D** 10w-C 10w-A 10w-A 9.5w-A 5.5w-B 9 10 8w-D** 8w-D** 2 5.5w-B 8 7 119 129 4 79 4 3 3 3 3 10w-B 10w-D** 10w-C 10w-A 10w-A 9.5w-A 2 10w-A 10w-A 8w-C 8w-C 8w-D** 8w-D** 8w-D** 9.5w-A 1 10w-C 10w-D** 10w-B 5w-A+B 5.5w-A 5.5w-A 5.5w-B 5.5w-B 5.5w-B 6w-B 7w-B 8w-A 8w-A 8w-C 8w-C 8w-C 8w-D** 8w-D** 8w-D** 2 1 2 2 2 1 2 2 2 2 54 14 8 4 8w-C 8w-A 8w-A 7w-B 1 5.5w-A 5.5w-B 5.5w-B 0 5.5w-B 0 6w-B 1 7 4 9 11 15 13 5.5w-A 5w-A+B Wilhelm Johannsen Centre for Functional Genome Research 8w-D** 8w-C 8w-C 5 8w-A 8w-A 7w-B 6w-B 2 5.5w-A 4 8w-C 6 4 2 1 5.5w-A 5.5w-B 1 5w-A+B 10w-D** 10w-C Gene 6 Gene 5 25 24 9 9 6 1 10w-A 14 197 2 50 10w-B 5 10w-A 8w-D** 8w-D** 8w-D** 8w-C 8w-C 8w-C 8w-A 8w-A 4 75 31 41 23 9 9.5w-A 3 2 1 7 9 7w-B 6w-B 5.5w-B 6 100 8 125 30 40,0 47 55 80,0 53 90,0 65 54 58 24 28 3 5.5w-B 5.5w-B 5.5w-A 5.5w-A 11 20 0 22 18 7 3 6 5w-A+B 150 5 4 200 0 25 35 50,0 0 10 0,0 15 10,0 20 20,0 40 60,0 60 100,0 25 30,0 Gene 4 Control 4 175 Microarray verification 94 3 2 1 1 1 90,0 1 10w-B 10w-D** 10w-C 10w-A 10w-A 9.5w-A 8w-D** 8w-D** 8w-D** 8w-C 8w-C 8w-C 8w-A 8 7 7 5 4 3 10 10 3 10w-B 10w-D** 10w-A 10w-C 2 8w-C 8w-C 8w-D** 8w-D** 8w-D** 9.5w-A 10w-A 2 1 2 8w-A 8w-C 1 2 8w-A 7w-B 6w-B 5.5w-B 5.5w-B 2 5.5w-B 2 2 2 5w-A+B 5.5w-A 5.5w-A 5.5w-B 5.5w-B 5.5w-B 6w-B 7w-B 8w-A 8w-A 8w-C 8w-C 8w-C 8w-D** 8w-D** 8w-D** 9.5w-A 10w-A 10w-A 10w-C 10w-D** 10w-B 5w-A+B 5.5w-A 2 2 3 2 1 2 5.5w-A 1 1 1 2 2 3 1 2 6 6 7 4 4 1 1 2 Wilhelm Johannsen Centre for Functional Genome Research 3 2 2 2 27 14 4 12 10 8w-A Gene 9 Gene 8 2 2 5.5w-B 7w-B 5.5w-B 6w-B 1 1 5.5w-B 1 1 5.5w-A 5.5w-A 5w-A+B 10w-B 10w-D** 10w-C 10w-A 10w-A 9.5w-A 8w-D** 8w-D** 8w-D** 8w-C 0 0 1 5 1 2 8w-C 8w-C 8w-A 15 2 1 9 7 3 8w-A 7w-B 6w-B 8 25 2 41 23 24 9 3 5.5w-B 5.5w-B 5.5w-A 5.5w-B 3 5.5w-A 7 6 10 30 2 40,0 3 3 65 50,0 4 100,0 0 5w-A+B 0,0 4 2 5 28 18 20,0 54 58 60,0 3 70,0 1 10,0 22 30,0 Gene 7 Control 4 80,0 20 6 Summary • Troublesome technique! • Need to define experiments! • Rapid & relatively inexpensive Method • Invaluable in gene discovery • Smart tool for selection of best ‘expressors’ • Fast, conservative & rapid tool for verification of other expression data • Valuable tool for assessment of disease potential The Persistence of memory. Salvador Dali, 1931. The Museum of modern Art, NY Wilhelm Johannsen Centre for Functional Genome Research • Karen Friis Henriksen • Niels Tommerup • Claus Hansen • • • • • • • • Jesper Roland Jørgensen Jens Johansen Lone Dagø Philip Kusk Mette Grønborg Nikolaj Blom Teit E. Johansen Lars Wahlberg Wilhelm Johannsen Centre for Functional Genome Research