The 11th International Symposium on Wireless Personal Multimedia Communications (WPMC 2008) Development of THz Transistors & (300-3000 GHz) Sub-mm-Wave ICs Mark Rodwell University of.

Download Report

Transcript The 11th International Symposium on Wireless Personal Multimedia Communications (WPMC 2008) Development of THz Transistors & (300-3000 GHz) Sub-mm-Wave ICs Mark Rodwell University of.

The 11th International Symposium on Wireless Personal Multimedia Communications (WPMC 2008)
Development of THz Transistors
& (300-3000 GHz) Sub-mm-Wave ICs
Mark Rodwell
University of California, Santa Barbara
Coauthors
E. Lobisser, M. Wistey, V. Jain, A. Baraskar, E. Lind , J. Koo, B. Thibeault, A.C. Gossard
University of California, Santa Barbara
E. Lind
Lund University
Z. Griffith, J. Hacker, M. Urteaga, D. Mensa, Richard Pierson, B. Brar
Teledyne Scientific Company
X. M. Fang, D. Lubyshev, Y. Wu, J. M. Fastenau, W.K. Liu
International Quantum Epitaxy, Inc.
[email protected] 805-893-3244, 805-893-5705 fax
UCSB High-Frequency Electronics Group
THz InP Bipolar Transistors.
III-V CMOS for Si VLSI
InGaAs-channel MOSFETs for sub-22-nm scaling
Ultra high frequency III-V ICs
sub-mm-wave ICs
100-500 GHz digital logic
50-200 GHz Silicon ICs
mm-waves: MIMO links, arrays, sensor networks
fiber optics
Multi-THz Transistors Are Coming
InP Bipolars: 250 nm generation: → 780 GHz fmax , 400 GHz ft , 5 V BVCEO
40
U
20
10
mA/m2
dB
125 nm & 62 nm nodes
→ ~THz devices
10
30
H
21
f
max
= 780 GHz
6
4
2
f = 424 GHz
t
0
9
10
8
0
10
11
10
10
Hz
10
12
0
1
2
3
V
IBM IEDM '06: 65 nm SOI CMOS → 450 GHz fmax , ~1 V operation
Intel June '07: 45 nm / high-K / metal gate
production 65 nm: ~250 GHz fmax
→ continued rapid progress
What applications for III-V bipolars ?
What applications for mm-wave CMOS ?
ce
4
5
THz InP vs. near-THz CMOS: different opportunities
InP HBT: THz bandwidths, good breakdown, analog precision
10
&
H
21
f
max
= 780 GHz
f = 424 GHz
t
0
9
10
10
11
10
10
Hz
10
12
-2
10
-4
10
-6
10
-8
10
c
2
I
10
-10
10
-12
I
b
mA/m
20
b
U
10
c
dB
30
I , I (A)
40
8
6
4
2
0 0.25 0.5 0.75 1
V
be
0
0
1
2
(V)
3
4
5
Vce
340 GHz, 70 mW amplifiers (design)
In future: 700 or 1000 GHz amplifiers ?
J. Hacker M. Jones
(Teledyne) (UCSB)
200 GHz digital logic (design)
In future: 450 GHz clock rate ?
→ fast blocks for microwave mixed-signal
Z. Griffith
25-40 GHz gain-bandwidth op-amps→ low IM3 @ 2 GHz
Z. Griffith
M. Urteaga
(Teledyne)
In future: 200 GHz op-amps for low-IM3 10 GHz amplifiers?
THz InP vs. near-THz CMOS: different opportunities
65 / 45 / 33 / 22 ... nm CMOS
vast #s of very fast transistors
... having low breakdown, high output conductance
what NEW mm-wave applications will this enable ?
coherent
coherent
photonic
photonic
receiver
receiver
Q
opticaloptical
phasephase
recovery
recovery
Q
I
electronic
electronic
adaptive
adaptive
equalizer
equalizer
Q
Q
Q
I
I
I
massive monolithic mm-wave arrays
→ 1 Gb/s over ~1 km
I
average
average
+/-450 +/-450
Q
Q
mm-wave MIMO
frequency
frequency
control control
mm-wave imaging
sensor networks
Q
I
I’
I’
Q’
Q’
I
I
comprehensive equalization of
~100 Gb/s wireless, wireline, optical links
InP DHBTs: September 2008
200 GHz 300 GHz 400 GHz
500 GHz 600 GHz

popul a rmetri cs:
ft f max
800
Teledyne DHBT
250 nm
700
UIUC DHBT
NTT DHBT
f
max
(GHz)
600
250 nm
UIUC SHBT
600nm
400
UCSB DHBT
300
NGST DHBT
350 nm
HRL DHBT
200
IBM SiGe
100
Vitesse DHBT
100
200
ft f max
(1 ft  1 f max ) 1
much better metri cs:
power amplifiers:
P AE,associat edgain,
mW /m
low noise amplifiers:
Fmin , associat edgain,
digit al :
f clock , hence
(Ccb V / I c ),
Updated Sept. 2008
0
( ft  f max ) / 2
EHTZ DHBT
500
0
ft or f max alone
300
400
500
ft (GHz)
600
700
800
( Rex I c / V ),
( Rbb I c / V ),
(τb  τc )
Bipolar Transistor Design
We
Tb
t b  T 2Dn
2
b
Wbc
Tc
t c  Tc 2v sat
Ccb  Ac /Tc
I c,max  vsat Ae (Vce,operating  Vce,punch-through ) / T
2
c
P
T 
LE

 Le 
1  ln 
 We 

Rex  contact/Ae
 We Wbc   contact
 
Rbb  sheet 

 12Le 6 Le  Acontacts
emitterlength LE 
Bipolar Transistor Design: Scaling
We
Tb
t b  T 2Dn
2
b
Wbc
Tc
t c  Tc 2v sat
Ccb  Ac /Tc
I c,max  vsat Ae (Vce,operating  Vce,punch-through ) / T
2
c
P
T 
LE

 Le 
1  ln 
 We 

Rex  contact/Ae
 We Wbc   contact
 
Rbb  sheet 

 12Le 6 Le  Acontacts
emitterlength LE 
Bipolar Transistor Scaling Laws
Changes required to double transistor bandwidth:
parameter
collector depletion layer thickness
base thickness
emitter junction width
collector junction width
emitter contact resistance
current density
base contact resistivity
change
decrease 2:1
decrease
1.414:1
decrease 4:1
decrease 4:1
decrease 4:1
increase 4:1
decrease 4:1
Linewidths scale as the inverse square of bandwidth because thermal constraints dominate.
InP Bipolar Transistor Scaling Roadmap
industry university university appears
→industry 2007-8
feasible
maybe
emitter 512
16
256
8
128
4
64
2
32 nm width
1 m2 access 
base
300
20
175
10
120
5
60
2.5
30 nm contact width,
1.25 m2 contact 
collector 150
4.5
4.9
106
9
4
75
18
3.3
53
36
2.75
37.5 nm thick,
72 mA/m2 current density
2-2.5 V, breakdown
520
850
430
240
730
1300
660
330
1000
2000
1000
480
1400 GHz
2800 GHz
1400 GHz
660 GHz
ft
fmax
power amplifiers
digital 2:1 divider
370
490
245
150
512 nm InP DHBT
500 nm mesa HBT
150 GHz M/S latches
175 GHz amplifiers
Laboratory
Technology
UCSB / Teledyne / GCS
UCSB
500 nm sidewall HBT
DDS IC: 4500 HBTs
20-40 GHz op-amps
Teledyne
Teledyne / BAE
Teledyne / UCSB
Production
( Teledyne )
Z. Griffith
M. Urteaga
P. Rowell
D. Pierson
B. Brar
V. Paidi
ft = 405 GHz
fmax = 392 GHz
Vbr, ceo = 4 V
20 GHz clock
53 dBm OIP3 @ 2 GHz
with 1 W dissipation
150 nm thick collector
256 nm Generation
InP DHBT
40
dB
H
mA/m2
10
30
U
21
20
f
10
max
= 780 GHz
10
10
10
11
10
10
2
15
10
5
10
10
11
10
0
12
10
1
2
V
Hz
from one HBT
-15
-20
220
240
260
280
300
H
320
freq. (GHz)
200 GHz
master-slave
latch design
4
40
30
30
21
U
2
S21
3
ce
60 nm thick collector
-10
5
0
0
9
10
S11
4
12
11
= 560 GHz
mA/m
-5
dB
S21, S11, S22 (dB)
S22
0
3
20
ft = 560 GHz
5
2
21
mA/m
dB
4.7 dB Gain at 306 GHz.
340 GHz, 70 mW amplifier design
10
max
1
V
U
f
0
12
10
ce
10
10
10
9
10
H
20
4
0
Hz
70 nm thick collector
30
6
2
f = 424 GHz
0 t
9
10
8
20
10 fmax = 218 GHz
20
10
f = 660 GHz
t
Z. Griffith, E. Lind,
J. Hacker, M. Jones
0
9
10
10
10
11
10
Hz
10
12
0
0
1
2
V
ce
3
324 GHz Medium Power Amplifiers in 256 nm HBT
ICs designed by Jon Hacker / Teledyne
Teledyne 256 nm process flow-
Hacker et al, 2008 IEEE MTT-S
~2 mW saturated output power
10
40
Output Power (dBm)
Gain (dB)
Drain Current (mA)
PAE (%)
30
0
20
-10
10
-20
-20
0
-15
-10
-5
Input Power (dBm)
0
5
Current, mA
Gain (dB), Power (dBm), PAE (%)
20
Can we make a 1 THz SiGe Bipolar Transistor ?
Simple physics clearly drives scaling
transit times, Ccb/Ic → thinner layers,
higher current density
high power density → narrow junctions
small junctions→ low resistance contacts
Key challenge: Breakdown
15 nm collector → very low breakdown
(also need better Ohmic contacts)
Solutions
Eliminating excess collector area
would partly ease scaling
emitter 18
1.2
nm width
m2 access 
base
nm contact width,
m2 contact 
56
1.4
collector 15
125
???
nm thick
mA/m2 current density
V, breakdown
ft
fmax
GHz
GHz
1000
2000
PAs
1000
GHz
digital 480
GHz
(2:1 static divider metric)
Assumes collector junction 3:1 wider than emitter.
Assumes contacts 2:1 wider than junctions
What Would You Do With a THz Transistor ?
microwave ADCs and DACs
more resolution & more bandwidth
High-Performance 2-20 GHz Microwave Systems
high excess transistor bandwidth + precision design
--> high linear, highly precise microwave systems
microwave op-amps
high IP3 at low DC power
translinear mixers
high IP3 at low DC power
single-chip 300-600 GHz spectrometers
(gas detection)
670-1000 GHz imaging systems
sub-mm-wave communications
mm-wave Op-Amps for Linear Microwave Amplification
DARPA / UCSB / Teledyne FLARE: Griffith & Urteaga
Reduce distortion with
strong negative feedback
output power, dBm
linear response
increasing feedback
2-tone
intermodulation
300 GHz / 4 V InP HBT
R. Eden
input power, dBm
measured 20-40 GHz bandwidth
measured 54 dBm OIP3 @ 2 GHz
new designs in fabrication
simulated 56 dBm OIP3 @ 2 GHz
What Would You Do With a THz Transistor ?
microwave ADCs and DACs
more resolution & more bandwidth
High-Performance 2-20 GHz Microwave Systems
high excess transistor bandwidth + precision design
--> high linear, highly precise microwave systems
microwave op-amps
high IP3 at low DC power
translinear mixers
high IP3 at low DC power
single-chip 300-600 GHz spectrometers
(gas detection)
670-1000 GHz imaging systems
sub-mm-wave communications
150 & 250 GHz Bands for 100 Gb/s Radio ?
Wiltse, 1997
IEEE APS-Symposium,
Preceived / Ptrans  ( Dt Dr / 16 2 )( / R)2
Preceived( 4QPSK )  Q2  kTFB; Q  6
D  4Aeff 
sea
level
4 km
2
9 km
125-150 GHz, 200-300 GHz:
enough bandwidth for 100 Gb/s QPSK
150 GHz carrier, 100 Gbs/s QPSK radio:
30 cm antennas, 10 dBm power, fair weather→ 1 km range
150 GHz band: Expect ~10-20 dB/km attenuation for rain
But, for > 300 GHz : expect >30 db/km from 90% humidity
mm-wave (60-80 GHz) MIMO → wireless at 40+ Gb/s rates ?
Rayleigh Criterion:
Spatial angular separationof adjacent transmit ters :  t  D / R
Receive array angular resolution:  r   /( N  1) D
T o resolveadjacent channels,  r   r  ( N  1) D  R( N  1)
70 GHz, 1 km, 16 elements, 2 polarizations, 3.6 x 3.6 meter array, 2.5 GBaud QPSK
→ 160 Gb/s digital radio ?
50mV per division
50mV per division
mm-wave MIMO: 2-channel prototype, 60 GHz, 40 meters
500ps per division
500ps per division
(a)
(b)
mm-Wave & Sub-mm-Wave Wireless Links
The ICs will soon make this possible
SiGe BiCMOS: up to 150 GHz now,
future uncertain
Si CMOS: up to 150 GHz now, 200-300 GHz soon,
low output power
InP HBT: up to 500 GHz now, up to 1000 GHz soon
moderate to high power, moderate noise
Propagation characteristics will determine applications
Foul-Weather Attenuation, Highly Directional (LOS only) propagation
Massive mm-wave IC complexity in future
→ aggressive system adaptations / corrections