2D Recognition Using SIFT Computer Vision: CS 4731 Computer Science Columbia University A Little Quiz How would you recognize the following types of objects?
Download ReportTranscript 2D Recognition Using SIFT Computer Vision: CS 4731 Computer Science Columbia University A Little Quiz How would you recognize the following types of objects?
2D Recognition Using SIFT Computer Vision: CS 4731 Computer Science Columbia University A Little Quiz How would you recognize the following types of objects? Objects on an Assembly Line License Plates Rich 2D Images 2D Recognition Using SIFT Recognize 2D objects in real-world cluttered scenes using the Scale Invariant Feature Transform (SIFT). Topics: (1) Local Appearance & Interest Points (2) Scale-Space (3) The SIFT interest point detector (4) The SIFT descriptor (5) Matching & Results Raw Images are Hard to Match [Different Size, Orientation, Lighting, Color, …] Removing Sources of Variation Some Patches are not “Interesting” Are Lines Interesting? Are Blobs Interesting and Localizable? Locating 1D Blobs Image: x I (x ) First Derivative: I ( x) x x Second Derivative: I ( x) 2 x x 2 Locating 2D Blobs Use the Laplacian instead of second derivative: I ( x, y ) 2 2 x 2 2 y 2 Location of blobs given by extrema of Laplacian What about the size? What is the Size of 2D Blobs? Scale-Space Images only store the location of pixels: I ( x, y ) Scale-Space Images store the “scale” as well: S ( x, y , ) “Scale” What does “Scale” Mean? Different image resolutions? A Continuous Scale-Space Function We want images like this: Increasing σ The Gaussian function can generate these: G ( x, y , ) 1 2 2 e x2 y2 2 2 S ( x, y , ) G ( x, y , ) * I ( x, y ) 1D Scale-Space Extrema We want to find all locations x* and scales σ* of S(x,σ) S ( x, ) G ( ) * I ( x ) G ( ) * I ( x ) 2 [Lindeberg, 1994] 1D Scale-Space Extrema We want to find all locations x* and scales σ* of S(x,σ) S ( x, ) G ( ) * I ( x ) G ( ) * I ( x ) 2 All blue lines are at x* (by definition) All yellow dots are at σ* Whatever the image scale, we can always find all extrema at greater scales [Lindeberg, 1994] Characteristic Scales for 2D Images 2 σ1 1 σ2 σ σ G ( ) * I ( x, y ) 2 2 [Mikolajczyk, 2002] Summary of Theory Interesting Locations: ( x*, y*) arg max I ( x, y ) 2 ( x, y ) Characteristic Scales: * arg max G ( ) * I ( x, y ) 2 The SIFT Detector An efficient Difference of Gaussians detector Extracting SIFT Interest Points Image Scale-Space Images Detected Points *G(σ1) LoG(σ1) S(σ2) LoG(σ2) *G(σ2) S(σ3) … *G(σ3) … I(x,y) extrema S(σ1) filter bad points (weak extrema, asymmetric, bad contrast) [Lowe, 2004; Brown and Lowe, 2002] SIFT Detection Examples The SIFT Descriptor “Describe” points so they can be compared SIFT Scale Invariance Use the characteristic scales to match sizes Computing the Principal Orientation Use the histogram of gradient directions Principal Orientation SIFT Rotation Invariance Use the principal orientations to match rotation Computing the SIFT Descriptor Histograms of gradient directions over spatial regions SIFT Lighting Invariance Affine lighting model Image Irradiance Ideal Offset Gain Gradients remove offset Scene Radiance Descriptor Normalization removes gain SIFT Descriptor Comparison DEMO SIFT Scale Invariance Results SIFT Rotation Invariance Results SIFT Lighting Invariance Results SIFT Robustness to Clutter Matching SIFT Descriptors Object Scene Probabilities SIFT Object Matcher DEMO SIFT for 3D Objects? References [Autopano] Software to make panaromas using SIFT. http://user.cs.tuberlin.de/~nowozin/autopano-sift/ [Brown and Lowe, 2002] M. Brown and D. Lowe. “Invariant Features from Interest Point Groups”. BMVC, 2002. [Harris and Stephens, 1988] C. Harris and M. Stephens. “A Combined Corner and Edge Detector”. 4th Alvey Vision Conference, 1988. [Lowe, 2004] D. Lowe.“Distinctive Image Features from Scale-Invariant Keypoints”. IJCV, 2004. [Lindeberg, 1994] T. Lindeberg. “Scale-Space Theory: A Basic Tool for Analysing Structures at Different Scales.” J. of Applied Statistics, 1994. [Matas et al., 2002] J. Matas, O. Chum, M. Urban, and T. Pajdla. “Robust Wide Baseline Stereo from Maximally Stable Extremal Regions. BMVC, 2002. [Mikolajczyk, 2002] K. Mikolajczyk. “Detection of Local Features Invariant to Affine Transformations.” Ph.D. Thesis, 2002. References [Mikolajczyk and Schmid, 2004] K. Mikolajczyk and C. Schmid. “Scale and Affine Invariant Interest Point Detectors.” IJCV, 2004. [Mikolajczyk and Schmid, 2005] K. Mikolajczyk and C. Schmid. “A Performance Evaluation of Local Descriptors.” PAMI, 2005. [SIFT] SIFT Binaries. http://www.cs.ubc.ca/~lowe/keypoints/ [Witkin, 1983] A. Witkin. “Scale-Space Filtering”. IJCAI, 1983.