Design and Implementation of a Link Level Adaptive Software Radio Information & Telecommunication Technology Center Richard A.
Download ReportTranscript Design and Implementation of a Link Level Adaptive Software Radio Information & Telecommunication Technology Center Richard A.
Design and Implementation of a Link Level Adaptive Software Radio Information & Telecommunication Technology Center Richard A. Killoy May 27, 1999 Presentation Overview • • • • Brief Overview of RDRN Motivation - Why build this radio? Transceiver System Level Description Transmit and Receive Chain Implementation • Summary & Future Work RDRN Overview • Design High-Speed wireless ATM/IP Comm. Systems with Network and DLL adaptability which are rapidly deployable. • Sponsored by DARPA’s GLO-MO initiative This years goals: • Channel Estimation & Link Adaptation • Software Radios • Adaptive Networking • Resource Reservation Styles • Comparative Performance Evaluation of IP vs. ATM RDRN System Architecture Three Overlaid Radio Networks: • Low-Power Orderwire for signaling • High Capacity wireless ATM backbone • Cellular-like Radio Network for ATM access to end users 1-8 Mbps Mobile End User Node Ethernet Radio Controller and Transceiver Linux Host AT M Network High Data Rate Edge Node 10-100 Mbit/sec 1-8 Mbps Mobile End User Node Ethernet Radio Controller and Transceiver Linux Host Motivation Goal Solution Strategy Employed Channel Estimation Algorithms The use of adaptive equalization, functioning as channel estimators. Link Level Adaptation Algorithms Software radio allows us the flexibility to change link level parameters. Radios to Test, Evaluate, and Validate Software radios implementing the use of the channel estimation and link-level high-speed ADC and various DSP chips. algorithms These chips can be programmed dynamically via a PowerPC processor. Adaptive Parameter Allowable Values RF Section Transmit Power Control, TPC 5 dBm to 25 dBm in 2 dB increments Carrier Frequency Carrier frequency can be tuned within RF bandwidth in increments of 10 MHz *RF Front End Static Design, but supports 5.3 GHz, 2.4 GHz, and 1.2 GHz band. Physical Layer Modulation format BPSK, QPSK Data Rate 1, 2, 4 MSPS Data Link Layer FEC Limited by complexity of combinational logic circuit implemented in Alteras Multiple Access Scheme TDMA, FDMA or hybrid combination of both RF Preamble for TDMA Limited by length of time slot HDLC Frame Length Limited by Ethernet Packet Size, 1.5 kB Complete System Including Housing RF Front End Tx IF/RF InterConn. Antenna Ports Main Digital Board Rx IF/RF Interconnects BERT Ports PowerPC Microprocessor Board Transmitter Requirements Transmit within RF bands at 5.3 GHz, 2.4 GHz, and 1.2 GHz Frequency Agility – ability to select from multiple channels within each RF band Average power output of +30 dBm (1W) from each antenna RF Bandwidth = 100 MHz Channel BW = 10 MHz Selectable QPSK or BPSK modulation Symbol Rates of 1, 2, or 4 Msymbols/sec Multiple Access: FDD with TDMA/FDMA Transmit Power Control ( 2 dB steps from 5 dBm to 25 dBm) Transmit Power ON/OFF capability (TDMA) TxData received from PowerPC LO Spurious level = -28 dBm LO Phase Noise <= -130 dBc/Hz at 50 MHZ offset Transmitter System Level Diagram Software Selectable, Sectored Beamforming Beamforming Control Transmit Power Control Ethernet Linux Host PowerPC Digital Formatting Software Control of Initialization, Transmit Power and Beamforming IF 240 MHz RF 5.06 GHz 5.3 GHz QuadSectored Antenna Spectrum Utilization 5.35 GHz 50 MHz 5.25 GHz 10 MHz 5 MHz a b c a d b c d 5.3 GHz 4 TX Channels 4 RX Channels 1 Channel = 10 MHz RF Band = 100 MHz Receiver Requirements Receive within RF bands at 5.3 GHz, 2.4 GHz and 1.2 GHz Frequency Agility – ability to select from four channels within RF band Full Duplex Operation Digital IF Architecture (subsampling) Demodulate QPSK or BPSK modulation Receiver band selectivity = 100 MHz Receiver channel selectivity = 10 MHz Symbol Rates from 1, 2 or 4 MSymbols/sec Dynamically configurable – must be a multidimensional radio with varying software profiles (Software Radio) RxData passed to PowerPC NFmax <= 10 dB Receiver sensitivity = -85 dBm Dynamic Range = 60 dB Receiver System Level Diagram P atc h A ntenna A daptivity, Programming and Initiali zation A GC Control RF IF Digi tal Radio P owerPC E thernet 5.23 GHz A DC DQT DCL s tore rec overed s ymbols for c hannel es ti mation Linux Hos t Benefits to Digital Demodulation • • • • No need for tuning filters Can Construct Linear Phase Filters Flexible BW selection Multiple Modulation Formats can be supported • System can be simulated “exactly” • Multiple Radio “Personalities” as easy as setting up tables Control Bus Architecture Control Bus is a serial bus controlling: PLL programming Programmable Attenuators Beamforming 5 EX[0..3] AT TEN[0..4] 4 PowerPC Data BF[0..4] 5 Digital Formatting Digital Data 10 A[0..2] D[0..6] Add&Data Bus for demodulator programming 5 IF Analog TxSignal I2C[0..4] - for programming PLL's RF Power Section +12 +9, +5, +3.3V 240 MHz PLL & VCO Tx IF Stage 10MHz Oscillator AGC Amp Rx IF Stage IF Test Point ADC, fs=40MSPS BusControl Altera 40MHz CLK & CLK Drvr Programmable DQT and DCL Bit Error Rate (BERT) Ports AGC Power Level Indicators Tx Source Select (PPC, PN, BERT) 5.3 GHz Modular RF Front End IF Output Rx Ant. Port 10 MHz Ref. Input PLL’s IF Input VCO’s Tx Ant. Port Average Power Requirements Voltage [V] Current [A] Regulators (alone) Analog Sections 9V sections Total for Analog Sections 12 12 12 12 40m 120m 190m 350m Power Needed [W] 0.480 1.44 2.28 4.2 5V Digital. (Quiescent Only) 3.3V Digital. Powering only Altera’s (Quiescent Only) Total Power for Digital 5V 1.6 8 3V 333m 1 9W Total Power PPC (Quiescent), datasheet claims 8W Total Power 5W 12 V 1.52 A 18.2 W Receiver Implementation 5.3GHz Omni Antenna Patch has selectivity of 130 MHz BW MGA86576 -90dBm +18dB NF=2dB P1dB=+5dBm IIP3=+16dBm 5.23 GHz LO PLL & VCO -72dBm -64dBm -72dBm -73dBm -53dBm LO MGA82563 LPF +8dB NF=2.5dB P1dB=+17dBm IIP3=+31dBm MSA0611 +20dB HMC218MS8 Dbl Balan. MIxer CLoss = -8dB P1dB=+2dBm 80 MHz Fc 1dB@70M 40dB@120M to IF stage NF=3dB P1dB=+2dBm Patch Antenna Sub-Assembly Power Supply 1W Power Amplifier Integrated BPF Patch Antenna View of RF Receiver 10MHz Reference Input RF Output, to IF section VCO RF Mixer x2 Frequency Doubler from LNA & Antenna PLL Input Signal Levels Throughout Receive Chain Stages within Receive Chain – all Input Power Levels in dBm PTX @ 1W Desired Signal – Min Desired Signal -Max. Adjacent Channel at 10MHz Offset Tx Signal 50M offset, 1W, 50dB* isolation LNA -90 82563 -72 Mixer -64 LPF -72 0611 -73 SAW -53 AGC -63 (+24) BPF -39 0611 -40 2011 -20 BPF -2 ADC -3 -26 -8 0 -8 -9 +11 +1 (-40) “ “ “ “ “ -90 -72 -64 -72 -73 -53 -83 (+24) -59 -60 -40 -22 -23 -26 -8 0 -8 -9 +11 -19 (-40) -59 -60 -40 -22 -23 -20 -2* +6 -2 (-40) -42 -22 (-50) -72 (+24) -48 -49 -29 -11 -12 -72 (-40) -112 -113 -93 -75 -76 Receive Signal Levels Power Levels for Various Signals throughout Receive Stages 20 0 -20 Signal Level [dBm] -40 -60 Min. Rcr Signal Max. Rcr Signal Adj. Channel Tx. Signal -80 LNA -100 0 2 4 6 Stage 8 10 12 System Noise Figure Total Cascaded System Noise Figure 2.5 2 Noise Figure [dB] 1.5 1 0.5 0 LNA Amp1 Cable LPF Mixer Cable Amp2 Stage Amp3 AGC SAW BPF BPF Amp4 Receiver, IF to ADC -53dBm -63dBm -39dBm -40dBm -20dBm -2dBm -3dBm SAW Filter Sawtek 854665 RF2607 MSA0611 MGA2011 BPF BPF from RF board AGC +20dB +18dB ADC to Digital Stage 12 NF=3dB NF=3dB 70 MHz CF +45dB to -35dB 12 bit P1dB=+2dBm P1dB=+8dBm 10 MHz BW NF = 5dB Imped. Matching Imped. Matching fs=40MSPS Ins. Losss = -10 dB Ins.Loss= -1dB Ins.Loss= -1dB 80dB SFDR input: -3dBm Receiver, IF to ADC AGC Amp. +40dB Amplifier Chain 70MHz SAW Filter IF Testpoint, -20dB down IF Input, from RF board Aux. Input AGC Output A/D Converter, 40MSPS Digital Section Bus Control Altera EPM7128S to PPC RxData & RxCLK 10 10 2 Address & Data Bus for programming from ADC 12 I Altera EPM7128S DQT HSP50110 10 10 Q I Altera EPM7128S 10 10 Q DCL HSP50210 10 30 Synch. 15 20 Hard Disk Logic Analyzer 20 Altera EPM7128S Digital Quadrature Tuner Digital Costas Loop Digital Section SigProc3 Altera 40Mhz Oscillator CLK Driver BusCtrl Altera ADC, fs=40MSPS Wactchdog IC—for Power Reset SigProc1 Altera DCL SigProc2 Altera BERT Ports AGC LED Level Indicators DQT Source Selector Transmitter Implementation (Baseband to IF) 240 MHz LO PLL & VCO SAWT EK 855092 240 MHz BPF LO PowerPC Altera CPLD EPM7128S-7 Source Data Format 1-8Mbits/sec HDLC format 500K to 4 MSym/sec +1dBm LPF I MSA-1105 I Quadrature Modulator Q +14dBm +13dB +3dBm +16dBm MSA-1105 +13dB Prog. Atten +12dBm to RF section Q 1st Order RC filter, fc = 5MHz RF2464 -11dB Loss BW = 12MHz P1dB=+17.5dBm P1dB=+17.5dBm NF=3.6dB NF=3.6dB IIP3=30dBm IIP3=30dBm -4dB Loss, 0-44dB Atten. Range Close Up View of Tx IF Stage RF2464 Modulator 240MHz PLL & VCO Oscillato 240MHz r SAW 10MHz Oscillat or 10MHz 10MHz filter Oscillator Oscillat Prog. or Attenuators 10MHz Oscillator 10MHz IF Transmit Output, to RF Board Oscillat Oscillat or 10MHz Drive Ckt for Modulator 10MHz Reference Outputs, to RF Board Oscillator 10MHz Transmit RF Section Software Selectable, Sectored Beamforming 5.07 GHz LO PLL & VCO +12dBm 3dB Pad from IF section LO +1dBm +8dBm MG82563 +7 dB +15dBm +12dBm +31dBm Power Printed HairPin Amp. MG82563 BPF MGA-85563 +7 dB +19dB P1dB=+17dBm HMC218MS8, P1dB=+16dBm -3dB loss NF=3dB P =+17dBm Dbl. Bal. IP3=+29dBm 100MHz BW 1dB NF=3dB Mixer -28@400MHz BW NF=7.2dB CLos s=8dB -40@800MHz BW 5.3 GHz QuadSectored Antenna Transmit RF IF Input RF Mixer Oscillato r PLL 10MHz 10MHz Input Oscillato r 10MHz Oscillato r 10MHz Oscillato r 2.5 GHz VCO 10MHz Oscillato r 10MHz x2 Frequency Doubler RF Output, to PA and Antenna Summary • Software controlled radio with modular RF front ends for use in channel estimation. • High-Speed (up to 8 Mbps) wireless radio which is capable of physical layer and data-link layer adaptability. Future Work • Use this radio “platform” to develop protocols and algorithms to control the physical & data-link layer. • Real time channel estimation and the use of these parameters in the above adaptation algorithms. Sub-Sampling Spectrum to be sampled How to choose fs , 0 -70 70 F [MHZ] convolved with samples 2 fH 2f fs L k 1 k where themaximumvalue of k is : k -40 0 40 0 0.25fs fs/2 F [MHZ] fs=40M Digital Spectrum -fs/2 = 10M f fL fH fL Decimation Apparent useable BW fs Can Only see up to 2 Decimation creates new “folding frequency” Noise and possible interferers aliased into passband?--How much attenuation? Use Alias Profile Digital Quadrature Tuner, detail Digital Costas Loop, detail