Distance Bounding Protocols with Void Challenges for RFID Jorge Munilla Fajardo Dpto. Ingeniería de Comunicaciones.

Download Report

Transcript Distance Bounding Protocols with Void Challenges for RFID Jorge Munilla Fajardo Dpto. Ingeniería de Comunicaciones.

Distance Bounding Protocols
with Void Challenges for RFID
Jorge Munilla Fajardo
Dpto. Ingeniería de Comunicaciones. E.T.S.I.Telecomunicación.
Universidad de Málaga (Spain)
SECTIONS
1.- Attacks related to the location
2.- Definition of Distance Bounding Protocols
3.- Proposed protocol for RFID: HKP (Hancke and
Kuhn’s protocol)
4.- Modification of the HKP with void-challenges
5.- Novel low-cost proposal
Ingeniería de Comunicaciones, Universidad de Málaga
1.- Attacks related to the distance
►Distance Fraud Attacks
►Relay Attacks or Mafia Fraud Attacks
►Terrorist Attacks
Characters:
Legitimate prover
Legitimate prover
acting in a bad way
Ingeniería de Comunicaciones, Universidad de Málaga
Adversary
1.- Attacks related to the distance
►Distance Fraud Attacks
►Relay Attacks or Mafia Fraud Attacks
►Terrorist Attacks
Range
T-A
R-A
Ingeniería de Comunicaciones, Universidad de Málaga
1.- Attacks related to the distance
►Distance Fraud Attacks
►Relay Attacks or Mafia Fraud Attacks
►Terrorist Attacks
Range
T-A
R-A
Ingeniería de Comunicaciones, Universidad de Málaga
1.- Attacks related to the distance
►Distance Fraud Attacks
►Relay Attacks or Mafia Fraud Attacks
►Terrorist Attacks
Range
T-A
T-B
R-B
R-A
R-A
ATTACKER
Ingeniería de Comunicaciones, Universidad de Málaga
1.- Attacks related to the distance
►Distance Fraud Attacks
►Relay Attacks or Mafia Fraud Attacks
►Terrorist Attacks
Range
T-A
T-B
R-A
R-A
Legitimate user collaborates with the adversary
giving him the necessary information to access to
the system but only once.
Ingeniería de Comunicaciones, Universidad de Málaga
1.- Attacks related to the distance
Range
R
A
Distance Fraud Attack
The most worrying
Range
T
B
ATTACK
ER
R
R
-AA
Mafia Fraud Attack
Range
R
R
-AA
Ingeniería de Comunicaciones, Universidad de Málaga
Terrorist Attack
1.- Attacks related to the distance
►Distance Fraud Attacks
►Relay Attacks or Mafia Fraud Attacks
The most
worrying
►Terrorist Attacks
These attacks are orthogonal to high level security protocols
SOLUTION: DISTANCE BOUNDING PROTOCOLS
Ingeniería de Comunicaciones, Universidad de Málaga
2.- Distance Bounding Protocols
VERIFIER
K
Challenge
Start Timer
PROVER
K
Compute
Response
Response = f(challenge, K)
Stop Timer
n times
CRYPTOGRAPHIC PART
-Based on symmetric key
Received signal strength
DISTANCE
BOUNDING PART
Ultra-sound waves
Round-trip time
Electromagnetic waves
Ingeniería de Comunicaciones, Universidad de Málaga
Processing
delay must be
short and
invariant
2.- Brand and Chaum´s protocol
The first distance bounding protocols based on single-bits round trips
VERIFIER
K
Compute
H2n = f(K,N1,N2)
R0=H1||H2||…Hn
R1=Hn+1||Hn+2||…H2n
Start Timer
Stop Timer
PROVER
K
N1
N2
For i=1 to n do:
C
R
Compute
H2n = f(K,N1,N2)
R0=H1||H2||…Hn
R1=Hn+1||Hn+2||…H2n
R=R0i if C=0
R=R1i if C=1
End for
Check S
S
Ingeniería de Comunicaciones, Universidad de Málaga
S=MAC(K,C1||C2||..Cn)
2.- Brand and Chaum´s protocol
The first distance bounding protocols based on single-bits round trips
PROVER
VERIFIER
K
K
Compute
H2n = f(K, N1,N2)
R0=H1||H2||…Hn
R1=Hn+1||Hn+2||…H2n
Start Timer
Stop Timer
N1
N2
For i=1 to n do:
C
R
Compute
H2n = f(K, N1,N2)
R0=H1||H2||…Hn
R1=Hn+1||Hn+2||…H2n
R=R0i if C=0
R=R1i if C=1
End for
Check S
S
Ingeniería de Comunicaciones, Universidad de Málaga
S=MAC(K,C1||C2||..Cn)
2.- Brand and Chaum´s protocol
The first distance bounding protocols based on single-bits round trips
PROVER
VERIFIER
K
K
Compute
H2n = f(K,N1,N2)
R0=H1||H2||…Hn
R1=Hn+1||Hn+2||…H2n
psuccessatta
1
 
 2
n
Start Timer
Stop Timer
N1
N2
For i=1 to n do:
C
R
Compute
H2n = f(K, N1,N2)
R0=H1||H2||…Hn
R1=Hn+1||Hn+2||…H2n
R=R0i if C=0
R=R1i if C=1
End for
Check S
S
Ingeniería de Comunicaciones, Universidad de Málaga
S=MAC(K,C1||C2||..Cn)
2.- Brand and Chaum´s protocol
The first distance bounding protocols based on single-bits round trips
PROVER
VERIFIER
K
K
Compute
H2n = f(K, N1,N2)
R0=H1||H2||…Hn
R1=Hn+1||Hn+2||…H2n
Start Timer
Stop Timer
N1
N2
For i=1 to n do:
C
R
Compute
H2n = f(K, N1,N2)
R0=H1||H2||…Hn
R1=Hn+1||Hn+2||…H2n
R=R0i if C=0
R=R1i if C=1
End for
Check S
S
Ingeniería de Comunicaciones, Universidad de Málaga
S=MAC(K,C1||C2||..Cn||R1…)
2.- Brand and Chaum´s protocol
The first distance bounding protocols based on single-bits round trips
PROVER
VERIFIER
K
K
Compute
H = f(K, N1,N2)
R0=H1||H2||…Hn
R1=Hn+1||Hn+2||…H2n
2n
Start Timer
Stop Timer
N1
N2
For i=1 to n do:
C
R
Compute
H2n = f(K, N1,N2)
R0=H1||H2||…Hn
R1=Hn+1||Hn+2||…H2n
RELIABLE
Signal goes through
every layer
R=R0i if C=0
UNRELIABLE
R=R1i if C=1
Signal doesn’t go
through every layer
End for
Check S
S
S=MAC(K,C1||C2||..Cn)
Ingeniería de Comunicaciones, Universidad de Málaga
RELIABLE
Signal goes through
every layer
3.- Hancke and Kuhn’s protocol
VERIFIER
K
PROVER
K
N1
Compute
H2n = f(K, N1,N2)
R0=H1||H2||…Hn
R1=Hn+1||Hn+2||…H2n
Start Timer
Stop Timer
For i=1 to n do:
C
R
H2n = f(K, N1,N2)
R0=H1||H2||…Hn
R1=Hn+1||Hn+2||…H2n
R=R0i if C=0
R=R1i if C=1
End for
Removed
Due to
unreliability of the
channel
N2
Compute
Check S
S
Ingeniería de Comunicaciones, Universidad de Málaga
S=MAC(K,C1||C2||..Cn)
3.- Hancke and Kuhn’s protocol
VERIFIER
K
PROVER
K
N1
Compute
H2n = f(K, N1,N2)
R0=H1||H2||…Hn
R1=Hn+1||Hn+2||…H2n
UWB
Channel
Start Timer
Stop Timer
N2
For i=1 to n do:
C
R
End for
Ingeniería de Comunicaciones, Universidad de Málaga
Compute
H2n = f(K, N1,N2)
R0=H1||H2||…Hn
R1=Hn+1||Hn+2||…H2n
R=R0i if C=0
R=R1i if C=1
3.- Hancke and Kuhn’s protocol
PROBLEMS:
►Vulnerable to Terrorist Attack
Ingeniería de Comunicaciones, Universidad de Málaga
K,vo,v1 intermingled
(K=Dv1(v0))
Hancke and Kuhn’s protocol
PROBLEMS:
►Vulnerable to Terrorist Attack
K,vo,v1 intermingled
►Adversary succeeds with probability ¾
Ingeniería de Comunicaciones, Universidad de Málaga
(K=Dv1(v0))
Higher number
of rounds
4.-Modification of the HKP with void challenges
Beside v0 and v1, a third random bit-string is generated  P
P points out when the reader sends a challenge and when he doesn’t
Compute
H3n = f(K, N1,N2)
V0=H1||H2||…Hn
V1=Hn+1||Hn+2||…H2n
P=H2n+1||H2n+2||…H3n
Compute
H2n = f(K, N1,N2)
V0=H1||H2||…Hn
V1=Hn+1||Hn+2||…H2n
But a 2n+1 bitstring could be used.
C=0  H1, H2, H3 ...
V
P
C=1  Hn+1, Hn , Hn-1...
Ingeniería de Comunicaciones, Universidad de Málaga
4.-Modification of the HKP with void challenges
Using this vector P, card is able to detect an adversary trying to get the
responses in advance.
Ingeniería de Comunicaciones, Universidad de Málaga
4.-Modification of the HKP with void challenges
Analysis
Attacker has two possible strategies:
► Asking in advance (taking the risk the card uncovers him)
p adv1
1
 n
2
► Without asking in advance (trying to guess the challenges)
2
p no adv1
n
1
1
1
1
 p(0)  p(1)   p(2)     ...p(n)     n
2
2
 2
 2
Ingeniería de Comunicaciones, Universidad de Málaga
 n  1   3 
       

 4
t 0  t   2 
t n
t
n
4.-Modification of the HKP with void challenges
-Without asking in advance (trying to guess the challenges)
2
p no adv1
n
1
1
1
1
 p(0)  p(1)   p(2)     ...p(n)     n
2
2
 2
 2
 n  1   3 
       

 4
t 0  t   2 
t n
t
n
No advantages!? It coincides with the
probability for the HKP
But this is true only in a noise-free environment, when the unreliability
of the channel is taken into account this modified protocol presents
better features than HKP
Ingeniería de Comunicaciones, Universidad de Málaga
4.-Modification of the HKP with void challenges
Anyway, in a noise-free environment if P is generated in the following way:
Compute
H4n = f(K, N1,N2)
V0=H1||H2||…Hn
V1=Hn+1||Hn+2||…H2n
P=f(H2n+1, H2n+2 )||f(H2n+3, H2n+4)||…f(H4n-1, H4n)
f(x1,x2) = 1 if x1x2=00, 01, 10
f(x1,x2) = 0 if x1x2=11
The probability for an interval to have a challenge
is three times higher than to be void
Ingeniería de Comunicaciones, Universidad de Málaga
4.-Modification of the HKP with void challenges
Analysis when P is generating making the probability for an interval to
have a challenge is three times higher than to be void:
Same probabilities
with fewer rounds
Ingeniería de Comunicaciones, Universidad de Málaga
Hancke and Kuhn’s protocol
PROBLEMS:
►Vulnerable to Terrorist Attack
K,vo,v1 intermingled
►Adversary succeeds with probability ¾
(K=Dv1(v0))
Void
challenges
Microwave links
&
Faster Logic
►Expensive
Sresolution =c/BW
Ingeniería de Comunicaciones, Universidad de Málaga
5.- Novel protocol with void-challenges
Two targets
►Reduced processing delay (short and invariant)
►Low cost solution: to modify as less as possible the ordinary
cards.The complexity must fall on the reader
We give up the idea of avoiding distance fraud attacks We would need too much BW
and fast logic
►It is carried out by a legitimate user
Distance Fraud attack isn’t too worrying
►To increase the range significantly are
necessary sophisticated devices
Ingeniería de Comunicaciones, Universidad de Málaga
5.- Novel protocol with void-challenges
Two targets
►Reduced processing delay (short and invariant)
►Low cost solution: modify as less as possible the ordinary
cards.The complexity must fall on the reader
We give up the idea of avoiding distance fraud attacks We would need too much BW
and fast logic
We focus on avoiding the most worrying attacks  Relay attacks
The idea will be to detect the delay introduced by the attacker's devices
Ingeniería de Comunicaciones, Universidad de Málaga
5.- Novel protocol with void-challenges
Two targets
►Reduced processing delay (short and invariant)
►Low cost solution: modify as less as possible the ordinary
cards.The complexity must fall on the reader
We give up the idea of avoiding distance fraud attacks We would need too much BW
and fast logic
We focus on avoiding the most worrying attacks  Relay attacks
How to modify this protocol to make it resistant to terrorist attacks
Ingeniería de Comunicaciones, Universidad de Málaga
5.- Novel protocol with void-challenges
RFID-14443a - FEATURES:
►Carrier: 13.56MHz
►Inductive coupling: to supply energy and communication  Up to 10cm
►Passive: no batteries, energy from the reader.
►Communication:106 kbps (fc/128).
►From Reader to Card: a 100% ASK modulation with Modified Miller Code
2-3μs
►From Card to Reader: Load Modulation. Subcarrier 847Khz (fc/16).Manchester Coding
Ingeniería de Comunicaciones, Universidad de Málaga
5.- Novel protocol with void-challenges
V0 -points out when the reader sends the challenge
Two bit-string are generated:
V1 -points out which must be the card’s response
►Reader to the card communication:
►Card to the reader communication:
Ingeniería de Comunicaciones, Universidad de Málaga
5.- Novel protocol with void-challenges
Example for: V0=001010011 and V1=1001
► We take advantage of the characteristics of the communication based on inductive
coupling  Reader monitories directly the amplitude of the carrier (no side band) to detect
the state of the card.
► Processing delay is zero because the card doesn’t have to compute anything.
It knows beforehand the next state.
Ingeniería de Comunicaciones, Universidad de Málaga
5.- Novel protocol with void-challenges
Reader monitories directly the amplitude of the carrier (no side band)
► The key point is: how fast the reader can detect the state of the card.
► The longer is the distance worse is the inductive coupling and more
difficult will be to detect the state
Ingeniería de Comunicaciones, Universidad de Málaga
5.- Novel protocol with void-challenges
Resistant against terrorist attack
►K, V0, V1 are intermingled
►To avoid a eavesdropper could know the key K: the reader
randomly leaves without sending some challenges 
eavesdropper loses this information.
Clearly, the number of intervals (rounds) has to be increased
Ingeniería de Comunicaciones, Universidad de Málaga
5.- Novel protocol with void-challenges
Security Analysis
► Vulnerable to distance fraud attack
►Resistant to relay attacks and terrorist attacks
The complexity of the attacks this protocol is able to detect depends on the
time the reader needs to distinguish the state of the card. It will depend on the
distance between the card and the reader but 1μs could be enough.
Simple attacks are easily detected (Hancke’s attack introduces 15-20μs)
Furthermore, to improve the system only the reader has to be modified.
Much cheaper than if the cards had to be modified
Ingeniería de Comunicaciones, Universidad de Málaga
6.-CONCLUSIONS
► Attacks related to the location  The most worrying is the mafia fraud
attack.
►Distance Bounding protocol are the only solution against them. Tightly
integrated in the physical layer.
►Hancke and Kuhn’s protocol for RFID.
►Vulnerable to terrorist attack  K, v0 and v1 Intermingled.
►High number of rounds  Use of void challenges.
►Expensive  Use of the novel distance bounding protocol to detect
simple relay attacks (1μs). The complexity falls on the reader.
Ingeniería de Comunicaciones, Universidad de Málaga
DISTANCE BOUNDING PROTOCOLS
WITH VOID CHALLENGES FOR RFID
Jorge Munilla. e-mail:[email protected]
THANK YOU FOR YOUR ATTENTION
Dpto. Ingeniería de Comunicaciones
UNIVERSIDAD DE MÁLAGA