Molecular Modeling and Informatics C371 Introduction to Cheminformatics Kelsey Forsythe Characteristics of Molecular Modeling Representing behavior of molecular systems Visual (tinker toys – LCDs) rendering of molecules Mathematical.
Download ReportTranscript Molecular Modeling and Informatics C371 Introduction to Cheminformatics Kelsey Forsythe Characteristics of Molecular Modeling Representing behavior of molecular systems Visual (tinker toys – LCDs) rendering of molecules Mathematical.
Molecular Modeling and Informatics C371 Introduction to Cheminformatics Kelsey Forsythe Characteristics of Molecular Modeling Representing behavior of molecular systems Visual (tinker toys – LCDs) rendering of molecules Mathematical rendering (differential equations, matrix algebra) of molecular interactions Time dependent and time independent realms Molecular Modeling + = Valence Bond Theory Underlying equations: empirical (approximate, soluble) -Morse Potential VHH D0 (1 ea(RR0 ) )2 ab initio (exact, insoluble (less hydrogen atom)) -Schrodinger Wave EquationHˆ E 8 .3 5 E -2 8 8 .3 5 E -2 8 8 .3 5 E -2 8 8 .3 5 E -2 8 8 .3 1 .4 E -51E8-2 8 8 .3 5 E -2 8 8 .3 5 E -2 8 1 .2 E - 1 8 8 .3 5 E -2 8 8 .3 5 E -2 8 1 .3 E -51E8-2 8 8 8 .3 5 E -2 8 8 .3 E -51E9-2 8 8 .3 5 E -2 8 8 6 .3 E -51E9-2 8 8 .3 5 E -2 8 8 .3 5 E -2 8 4E-19 8 .3 5 E -2 8 8 .3 5 E -2 8 2 .3 E -51E9-2 8 8 8 .3 5 E -2 8 8 .3 50E -2 8 8 .3 5 E -2 0 8 8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 2 .0 3 0 9 8 E - 1 8 1 .0 5 3 7 4 E - 1 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8for 7 8 7Hydrogen 1 4 0 1 .7 7 5Molecule 6 9 E - 1 8 9 .6 6 1 5 5 E - 1 9 Empirical Potential 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 1 .5 4 6 8 2 E - 1 8 8 .8 2 3 6 5 E - 1 9 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 1 .3 4 2 0 1 E - 1 8 8 .0 2 3 7 5 E - 1 9 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 1 .1 5 9 1 3 E - 1 8 7 .2 6 1 8 5 E - 1 9 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 9 .9 6 2 0 7 E - 1 9 6 .5 3 7 9 5 E - 1 9 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 8 .5 1 4 5 1 E - 1 9 5 .8 5 2 0 5 E - 1 9 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 7 .2 3 2 0 9 E - 1 9 5 .2 0 4 1 5 E - 1 9 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 6 .0 9 9 7 3 E - 1 9 4 .5 9 4 2 5 E - 1 9 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 5 .1 0 3 6 2 E - 1 9 4 .0 2 2 3 5 E - 1 9 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 4 .2 3 1 1 E -1 9 3 .4 8 8 4 5 E - 1 9 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 3 .4 7 0 6 1 E - 1 9 2 .9 9 2 5 5 E - 1 9 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 2 .8 1 1 5 5 E - 1 9 2 .5 3 4 6 5 E - 1 9 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 2 .2 4 4 2 6 E - 1 9 2 .1 1 4 7 5 E - 1 9 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 1 .7 5 9 8 7 E - 1 9 1 .7 3 2 8 5 E - 1 9 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 1 .3 5 0 3 1 E - 1 9 1 .3 8 8 9 5 E - 1 9 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 1 .0 0 8 2 E -1 9 1 .0 8 3 0 5 E - 1 9 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 7 .2 6 7 8 7 E - 2 0 8 .1 5 1 4 7 E - 2 0 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 4 .9 9 9 2 4 E - 2 0 5 .8 5 2 4 7 E - 2 0 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 3 .2 2 0 0 1 E - 2 0 3 .9 3 3 4 7 E - 2 0 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 1 .8 7 9 0 1 E - 2 0 2 .3 9 4 4 7 E - 2 0 8 .707.5 5 6 7 E +114 2 0 5 618.5 7 8 7 1 4 02 9 .2 9 623.58 E - 2 1 31 .2 3 5 437.5 E-20 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 3 .2 9 4 4 3 E - 2 1 4 .5 6 4 7 5 E - 2 1 4 Empirical Models Simple/Elegant? Intuitive?-Vibrations ( F kr ) Major Drawbacks: Does not include quantum mechanical effects No information about bonding (re) Not generic (organic inorganic) Informatics Interface between parameter data sets and systems of interest Teaching computers to develop new potentials from existing math templates MMFF Potential E = Ebond + Eangle + Eangle-bond + Etorsion + EVDW + Eelectrostatic Atomistic Model History Atomic Spectra Plum-Pudding Model Neils Bohr (circa 1913) Wave-Particle Duality Planck (circa 1905) Planetary Model J. J. Thomson (circa 1900) Quantization Balmer (1885) DeBroglie (circa 1924) Schrodinger Wave Equation Erwin Schrodinger and Werner Heisenberg Classical vs. Quantum Trajectory Real numbers Deterministic (“The value is ___”) Variables Continuous energy spectrum Wavefunction Complex (Real and Imaginary components) Probabilistic (“The average value is __ ” Operators Discrete/Quantized energy Tunneling Zero-point energy Schrodinger’s Equation ˆ H E ˆ H - Hamiltonian operator Hˆ Tˆ Vˆ N Gravity? i 2 2mi N 2 C i j eie j ri rj 1 2 ˆ H (r ) (r ) 2 r 2 2 8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 2 .0 3 0 9 8 E - 1 8 1 .0 5 3 7 4 E - 1 8 Potential Molecule 8 .3 5 E -2 8 Empirical 8 .7 7 5 6 7 E +1 4 2 0 5 6 8for 7 8 7Hydrogen 1 4 0 1 .7 7 5 6 9 E - 1 8 9 .6 6 1 5 5 E - 1 9 8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 1 .5 4 6 8 2 E - 1 8 8 .8 2 3 6 5 E - 1 9 8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 1 .3 4 2 0 1 E - 1 8 8 .0 2 3 7 5 E - 1 9 1 .4 8E .3-51E8-2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 1 .1 5 9 1 3 E - 1 8 7 .2 6 1 8 5 E - 1 9 8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 9 .9 6 2 0 7 E - 1 9 6 .5 3 7 9 5 E - 1 9 8E .3-51E8-2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 8 .5 1 4 5 1 E - 1 9 5 .8 5 2 0 5 E - 1 9 1 .2 8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 7 .2 3 2 0 9 E - 1 9 5 .2 0 4 1 5 E - 1 9 8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 6 .0 9 9 7 3 E - 1 9 4 .5 9 4 2 5 E - 1 9 1E-18 8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 5 .1 0 3 6 2 E - 1 9 4 .0 2 2 3 5 E - 1 9 8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 4 .2 3 1 1 E -1 9 3 .4 8 8 4 5 E - 1 9 88E.3-5 1E 9 -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 3 .4 7 0 6 1 E - 1 9 2 .9 9 2 5 5 E - 1 9 8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 2 .8 1 1 5 5 E - 1 9 2 .5 3 4 6 5 E - 1 9 68E.3-5 1E 9 -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 2 .2 4 4 2 6 E - 1 9 2 .1 1 4 7 5 E - 1 9 8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 1 .7 5 9 8 7 E - 1 9 1 .7 3 2 8 5 E - 1 9 8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 1 .3 5 0 3 1 E - 1 9 1 .3 8 8 9 5 E - 1 9 4E-19 8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 1 .0 0 8 2 E -1 9 1 .0 8 3 0 5 E - 1 9 8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 7 .2 6 7 8 7 E - 2 0 8 .1 5 1 4 7 E - 2 0 28E.3-5 1E 9 -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 4 .9 9 9 2 4 E - 2 0 5 .8 5 2 4 7 E - 2 0 8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 3 .2 2 0 0 1 E - 2 0 3 .9 3 3 4 7 E - 2 0 8 .3 50E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 1 .8 7 9 0 1 E - 2 0 2 .3 9 4 4 7 E - 2 0 8 .3 5 E 0 -2 8 8 .707.5 5 6 7 E +1 0 9 .2 9 6 1 4 2 0 5 618.57 8 7 1 4 2 23 .58 E - 2 1 31 .2 3 5 437.5E - 2 0 8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 3 .2 9 4 4 3 E - 2 1 4 .5 6 4 7 5 E - 2 1 4 Hydrogen Molecule Hamiltonian Hˆ Tˆ Vˆ 2 ˆ H 2 2p1 2p 2 e21 e22 m p m p me me 1 1 1 1 1 1 C re1e 2 rp1 p 2 rp1e1 rp1e 2 rp 2e1 rp 2e 2 Born-Oppenheimer Approximation Hˆ el Tˆel Vˆel nuclei Vnuclei 2 2 2 1 1 1 1 1 1 e 1 e 2 ˆ H el C C 2 me me r r r r r rp1 p 2 e 1 e 2 p 1 e 1 p 1 e 2 p 2 e 1 p 2 e 2 Now Solve Electronic Problem Electronic Schrodinger Equation Solutions: F (r ) c m m (r ) m m (r ) , the basis set, are of a known form Need to determine coefficients (cm) Wavefunctions gives probability of finding electrons in space (e. g. s,p,d and f orbitals) Molecular orbitals are formed by linear combinations of electronic orbitals (LCAO) Hydrogen Molecule HOMO LUMO Hydrogen Molecule Bond Density Ab Initio/DFT Complete Description! Generic! Major Drawbacks: Mathematics can be cumbersome Exact solution only for hydrogen Informatics Approximate solution time and storage intensive – Acquisition, manipulation and dissemination problems Approximate Methods SCF (Self Consistent Field) Method (a.ka. Mean Field or Hartree Fock) Pick single electron and average influence of remaining electrons as a single force field (V0 external) Then solve Schrodinger equation for single electron in presence of field (e.g. H-atom problem with extra force field) Perform for all electrons in system Combine to give system wavefunction and energy (E) Repeat to error tolerance (Ei+1-Ei) Correcting Approximations Accounting for Electron Correlations DFT(Density Functional Theory) Moller-Plesset (Perturbation Theory) Configuration Interaction (Coupling single electron problems) Geometry Optimization First Derivative is Zero dV(r ) 0 dr As N increases so does dimensionality/complexity/beauty/difficulty Multi-dimensional (macromolecules, proteins) Conjugate gradient methods Monte Carlo methods Modeling Programs Observables Equilibrium bond lengths and angles Vibrational frequencies, UV-VIS, NMR shifts Solvent Effects (e.g. LogP) Dipole moments, atomic charges Electron density maps Reaction energies Comparison to Experiments Electronic Schrodinger Equation gives bonding energies for non-vibrating molecules (nuclei fixed at equilibrium geometry) at 0K Can estimate G= H TS using frequencies Eout NOT Hf ! Bond separation reactions (simplest 2-heavy atom components) provide path to heats of formation CH3CH2CH3 CH4 2CH3CH3 H fCH 3CH 2CH 3 E bondseparation - H f CH 4 + 2H f CH 3CH 3 QM E bondseparation E QM prod E react QM QM QM 2ECH (ECH ECH ) 3CH 3 3CH 2CH 3 4 Ab Initio Modeling Limits Function of basis and method used Accuracy ~.02 angstroms ~2-4 kcal N HF - 50-100 atoms DFT - 500-1000 atoms Semi-Empirical Methods Neglect Inner Core Electrons Neglect of Diatomic Differential Overlap (NDDO) Atomic orbitals on two different atomic centers do not overlap Reduces computation time dramatically Other Methods Energetics Monte Carlo Genetic Algorithms Maximum Entropy Methods Simulated Annealing Dynamics Finite Difference Monte Carlo Fourier Analysis Large Scale Modeling (>1000 atoms) Challenges Many bodies (Avogardo’s number!!) Multi-faceted interactions (heterogeneous, solute-solvent, long and short range interactions, multiple time-scales) Informatics Split problem into set of smaller problems (e.g. grid analysis-popular in engineering) Periodic boundary conditions Connection tables Large Scale Modeling Hybrid Methods Different Spatial Realms Treat part of system (Ex. Solvent) as classical point particles and remainder (Ex. Solute) as quantum particles Different Time Domains Vibrations (pico-femto) vs. sliding (micro) Classical (Newton’s 2nd Law) vs. Quantum (TDSE) Reference Materials Journal of Molecular Graphics and Modeling Journal of Molecular Modelling Journal of Chemical Physics THEOCHEM Molecular Graphics and Modelling Society NIH Center for Molecular Modeling “Quantum Mechanics” by McQuarrie “Computer Simulations of Liquids” by Allen and Tildesley Modeling Programs Spartan (www.wavefun.com) MacroModel (www.schrodinger.com) Sybyl (www.tripos.com) Gaussian (www.gaussian.com) Jaguar (www.schrodinger.com) Cerius2 and Insight II (www.accelrys.com) Quanta CharMM GAMESS PCModel Amber Summary Types of Models Tinker Toys Empirical/Classical (Newtonian Physics) Quantal (Schrodinger Equation) Semi-empirical Informatic Modeling Conformational searching (QSAR, ComFA) Generating new potentials Quantum Informatics Next Time QSAR (Read Chapter 4) MMFF Energy Stretching Ebond 7 0 2 0 2 K bond (rij r ) * 1 cs(rij rij ) cs (rij rij ) 12 0 2 ij MMFF Energy Bending Eangle K (ijk ) * 1 cb(ijk ) 0 2 ijk 0 ijk MMFF Energy Stretch-Bend Interactions 0 Ebond angle Kijk (rij rij0 ) Kkji (rkj rkj0 ) ijk ijk MMFF Energy Torsion (4-atom bending) Etorsion 0.5V1 1 cos V2 1 cos2 V3 1 cos3 MMFF Energy Analogous to Lennard-Jones 6-12 potential London Dispersion Forces Van der Waals Repulsions EVDW 7 1.07R ij * Rij 0.07Rij * ij *7 1.07Rij 2 7 *7 Rij 0.07Rij Intermolecular/atomic models General form: N N i j i j jk V V (r) V (ri ,rj ) V (ri ,rj ,rk ) ..... Lennard-Jones 12 6 V (rij ) 4 r r Van derWaals repulsion London Attraction MMFF Energy Electrostatics (ionic compounds) D – Dielectric Constant d- electrostatic buffering constant qi q j Eelectrostatic n D Rij d