Molecular Modeling and Informatics C371 Introduction to Cheminformatics Kelsey Forsythe Characteristics of Molecular Modeling Representing behavior of molecular systems Visual (tinker toys – LCDs) rendering of molecules Mathematical.
Download
Report
Transcript Molecular Modeling and Informatics C371 Introduction to Cheminformatics Kelsey Forsythe Characteristics of Molecular Modeling Representing behavior of molecular systems Visual (tinker toys – LCDs) rendering of molecules Mathematical.
Molecular Modeling
and Informatics
C371
Introduction to Cheminformatics
Kelsey Forsythe
Characteristics of
Molecular Modeling
Representing behavior of molecular systems
Visual (tinker toys – LCDs) rendering of
molecules
Mathematical rendering (differential equations,
matrix algebra) of molecular interactions
Time dependent and time independent realms
Molecular Modeling
+
=
Valence
Bond
Theory
Underlying equations:
empirical (approximate, soluble)
-Morse Potential VHH D0 (1 ea(RR0 ) )2
ab initio (exact, insoluble (less hydrogen atom))
-Schrodinger Wave EquationHˆ E
8 .3 5 E -2 8
8 .3 5 E -2 8
8 .3 5 E -2 8
8 .3 5 E -2 8
8 .3
1 .4
E -51E8-2 8
8 .3 5 E -2 8
8 .3 5 E -2 8
1 .2 E - 1 8
8 .3 5 E -2 8
8 .3 5 E -2 8
1 .3
E -51E8-2 8
8
8 .3 5 E -2 8
8 .3
E -51E9-2 8
8 .3 5 E -2 8
8
6 .3
E -51E9-2 8
8 .3 5 E -2 8
8 .3 5 E -2 8
4E-19
8 .3 5 E -2 8
8 .3 5 E -2 8
2 .3
E -51E9-2 8
8
8 .3 5 E -2 8
8 .3 50E -2 8
8 .3 5 E -2
0 8
8 .3 5 E -2 8
8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 2 .0 3 0 9 8 E - 1 8 1 .0 5 3 7 4 E - 1 8
8 .7 7 5 6 7 E +1
4 2 0 5 6 8for
7 8 7Hydrogen
1 4 0 1 .7 7 5Molecule
6 9 E - 1 8 9 .6 6 1 5 5 E - 1 9
Empirical
Potential
8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 1 .5 4 6 8 2 E - 1 8 8 .8 2 3 6 5 E - 1 9
8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 1 .3 4 2 0 1 E - 1 8 8 .0 2 3 7 5 E - 1 9
8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 1 .1 5 9 1 3 E - 1 8 7 .2 6 1 8 5 E - 1 9
8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 9 .9 6 2 0 7 E - 1 9 6 .5 3 7 9 5 E - 1 9
8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 8 .5 1 4 5 1 E - 1 9 5 .8 5 2 0 5 E - 1 9
8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 7 .2 3 2 0 9 E - 1 9 5 .2 0 4 1 5 E - 1 9
8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 6 .0 9 9 7 3 E - 1 9 4 .5 9 4 2 5 E - 1 9
8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 5 .1 0 3 6 2 E - 1 9 4 .0 2 2 3 5 E - 1 9
8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 4 .2 3 1 1 E -1 9 3 .4 8 8 4 5 E - 1 9
8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 3 .4 7 0 6 1 E - 1 9 2 .9 9 2 5 5 E - 1 9
8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 2 .8 1 1 5 5 E - 1 9 2 .5 3 4 6 5 E - 1 9
8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 2 .2 4 4 2 6 E - 1 9 2 .1 1 4 7 5 E - 1 9
8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 1 .7 5 9 8 7 E - 1 9 1 .7 3 2 8 5 E - 1 9
8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 1 .3 5 0 3 1 E - 1 9 1 .3 8 8 9 5 E - 1 9
8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 1 .0 0 8 2 E -1 9 1 .0 8 3 0 5 E - 1 9
8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 7 .2 6 7 8 7 E - 2 0 8 .1 5 1 4 7 E - 2 0
8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 4 .9 9 9 2 4 E - 2 0 5 .8 5 2 4 7 E - 2 0
8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 3 .2 2 0 0 1 E - 2 0 3 .9 3 3 4 7 E - 2 0
8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 1 .8 7 9 0 1 E - 2 0 2 .3 9 4 4 7 E - 2 0
8 .707.5
5 6 7 E +114 2 0 5 618.5
7 8 7 1 4 02 9 .2 9 623.58 E - 2 1 31 .2 3 5 437.5
E-20
8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 3 .2 9 4 4 3 E - 2 1 4 .5 6 4 7 5 E - 2 1
4
Empirical Models
Simple/Elegant?
Intuitive?-Vibrations ( F kr )
Major Drawbacks:
Does
not include quantum mechanical effects
No information about bonding (re)
Not generic (organic inorganic)
Informatics
Interface
between parameter data sets and
systems of interest
Teaching computers to develop new potentials
from existing math templates
MMFF Potential
E
= Ebond + Eangle + Eangle-bond +
Etorsion + EVDW + Eelectrostatic
Atomistic Model History
Atomic Spectra
Plum-Pudding Model
Neils Bohr (circa 1913)
Wave-Particle Duality
Planck (circa 1905)
Planetary Model
J. J. Thomson (circa 1900)
Quantization
Balmer (1885)
DeBroglie (circa 1924)
Schrodinger Wave Equation
Erwin Schrodinger and Werner Heisenberg
Classical vs. Quantum
Trajectory
Real numbers
Deterministic (“The value
is ___”)
Variables
Continuous energy
spectrum
Wavefunction
Complex (Real and
Imaginary components)
Probabilistic (“The average
value is __ ”
Operators
Discrete/Quantized energy
Tunneling
Zero-point energy
Schrodinger’s Equation
ˆ
H E
ˆ
H - Hamiltonian operator
Hˆ Tˆ Vˆ
N
Gravity?
i
2
2mi
N
2
C
i j
eie j
ri rj
1
2
ˆ
H (r )
(r )
2 r 2
2
8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 2 .0 3 0 9 8 E - 1 8 1 .0 5 3 7 4 E - 1 8
Potential
Molecule
8 .3 5 E -2 8 Empirical
8 .7 7 5 6 7 E +1
4 2 0 5 6 8for
7 8 7Hydrogen
1 4 0 1 .7 7 5
6 9 E - 1 8 9 .6 6 1 5 5 E - 1 9
8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 1 .5 4 6 8 2 E - 1 8 8 .8 2 3 6 5 E - 1 9
8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 1 .3 4 2 0 1 E - 1 8 8 .0 2 3 7 5 E - 1 9
1 .4
8E
.3-51E8-2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 1 .1 5 9 1 3 E - 1 8 7 .2 6 1 8 5 E - 1 9
8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 9 .9 6 2 0 7 E - 1 9 6 .5 3 7 9 5 E - 1 9
8E
.3-51E8-2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 8 .5 1 4 5 1 E - 1 9 5 .8 5 2 0 5 E - 1 9
1 .2
8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 7 .2 3 2 0 9 E - 1 9 5 .2 0 4 1 5 E - 1 9
8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 6 .0 9 9 7 3 E - 1 9 4 .5 9 4 2 5 E - 1 9
1E-18
8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 5 .1 0 3 6 2 E - 1 9 4 .0 2 2 3 5 E - 1 9
8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 4 .2 3 1 1 E -1 9 3 .4 8 8 4 5 E - 1 9
88E.3-5
1E
9 -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 3 .4 7 0 6 1 E - 1 9 2 .9 9 2 5 5 E - 1 9
8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 2 .8 1 1 5 5 E - 1 9 2 .5 3 4 6 5 E - 1 9
68E.3-5
1E
9 -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 2 .2 4 4 2 6 E - 1 9 2 .1 1 4 7 5 E - 1 9
8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 1 .7 5 9 8 7 E - 1 9 1 .7 3 2 8 5 E - 1 9
8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 1 .3 5 0 3 1 E - 1 9 1 .3 8 8 9 5 E - 1 9
4E-19
8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 1 .0 0 8 2 E -1 9 1 .0 8 3 0 5 E - 1 9
8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 7 .2 6 7 8 7 E - 2 0 8 .1 5 1 4 7 E - 2 0
28E.3-5
1E
9 -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 4 .9 9 9 2 4 E - 2 0 5 .8 5 2 4 7 E - 2 0
8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 3 .2 2 0 0 1 E - 2 0 3 .9 3 3 4 7 E - 2 0
8 .3 50E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 1 .8 7 9 0 1 E - 2 0 2 .3 9 4 4 7 E - 2 0
8 .3 5 E 0
-2 8 8 .707.5
5 6 7 E +1
0 9 .2 9 6
1 4 2 0 5 618.57 8 7 1 4 2
23
.58 E - 2 1 31 .2 3 5 437.5E - 2 0
8 .3 5 E -2 8 8 .7 7 5 6 7 E +1 4 2 0 5 6 8 7 8 7 1 4 0 3 .2 9 4 4 3 E - 2 1 4 .5 6 4 7 5 E - 2 1
4
Hydrogen Molecule
Hamiltonian
Hˆ Tˆ Vˆ
2
ˆ
H
2
2p1 2p 2 e21 e22
m p m p me me
1
1
1
1
1
1
C
re1e 2 rp1 p 2 rp1e1 rp1e 2 rp 2e1 rp 2e 2
Born-Oppenheimer Approximation
Hˆ el Tˆel Vˆel nuclei Vnuclei
2
2
2
1
1
1
1
1
1
e
1
e
2
ˆ
H el
C
C
2 me me
r
r
r
r
r
rp1 p 2
e
1
e
2
p
1
e
1
p
1
e
2
p
2
e
1
p
2
e
2
Now Solve Electronic Problem
Electronic Schrodinger
Equation
Solutions:
F
(r ) c m m (r )
m
m (r ) ,
the basis set, are of a known form
Need to determine coefficients (cm)
Wavefunctions gives probability of finding electrons
in space (e. g. s,p,d and f orbitals)
Molecular orbitals are formed by linear
combinations of electronic orbitals (LCAO)
Hydrogen Molecule
HOMO
LUMO
Hydrogen Molecule
Bond Density
Ab Initio/DFT
Complete Description!
Generic!
Major Drawbacks:
Mathematics can be cumbersome
Exact solution only for hydrogen
Informatics
Approximate solution time and storage intensive
– Acquisition, manipulation and dissemination problems
Approximate Methods
SCF (Self Consistent Field) Method (a.ka. Mean
Field or Hartree Fock)
Pick single electron and average influence of remaining
electrons as a single force field (V0 external)
Then solve Schrodinger equation for single electron in
presence of field (e.g. H-atom problem with extra force
field)
Perform for all electrons in system
Combine to give system wavefunction and energy (E)
Repeat to error tolerance (Ei+1-Ei)
Correcting
Approximations
Accounting for Electron Correlations
DFT(Density Functional Theory)
Moller-Plesset (Perturbation Theory)
Configuration Interaction (Coupling single
electron problems)
Geometry Optimization
First Derivative is Zero
dV(r )
0
dr
As N increases so does
dimensionality/complexity/beauty/difficulty
Multi-dimensional (macromolecules, proteins)
Conjugate gradient methods
Monte Carlo methods
Modeling Programs
Observables
Equilibrium bond lengths and angles
Vibrational frequencies, UV-VIS, NMR shifts
Solvent Effects (e.g. LogP)
Dipole moments, atomic charges
Electron density maps
Reaction energies
Comparison to
Experiments
Electronic Schrodinger Equation gives bonding energies
for non-vibrating molecules (nuclei fixed at equilibrium
geometry) at 0K
Can estimate G= H TS using frequencies
Eout NOT Hf !
Bond separation reactions (simplest 2-heavy atom components)
provide path to heats of formation
CH3CH2CH3 CH4 2CH3CH3
H fCH 3CH 2CH 3 E bondseparation - H f CH 4 + 2H f CH 3CH 3
QM
E bondseparation E QM
prod E react
QM
QM
QM
2ECH
(ECH
ECH
)
3CH 3
3CH 2CH 3
4
Ab Initio Modeling Limits
Function of basis and method used
Accuracy
~.02 angstroms
~2-4 kcal
N
HF - 50-100 atoms
DFT - 500-1000 atoms
Semi-Empirical Methods
Neglect Inner Core Electrons
Neglect of Diatomic Differential Overlap
(NDDO)
Atomic orbitals on two different atomic centers
do not overlap
Reduces computation time dramatically
Other Methods
Energetics
Monte Carlo
Genetic Algorithms
Maximum Entropy
Methods
Simulated Annealing
Dynamics
Finite Difference
Monte Carlo
Fourier Analysis
Large Scale Modeling
(>1000 atoms)
Challenges
Many bodies (Avogardo’s number!!)
Multi-faceted interactions (heterogeneous, solute-solvent,
long and short range interactions, multiple time-scales)
Informatics
Split problem into set of smaller problems (e.g. grid
analysis-popular in engineering)
Periodic boundary conditions
Connection tables
Large Scale Modeling
Hybrid Methods
Different Spatial Realms
Treat part of system (Ex. Solvent) as classical point
particles and remainder (Ex. Solute) as quantum
particles
Different Time Domains
Vibrations (pico-femto) vs. sliding (micro)
Classical (Newton’s 2nd Law) vs. Quantum (TDSE)
Reference Materials
Journal of Molecular Graphics and Modeling
Journal of Molecular Modelling
Journal of Chemical Physics
THEOCHEM
Molecular Graphics and Modelling Society
NIH Center for Molecular Modeling
“Quantum Mechanics” by McQuarrie
“Computer Simulations of Liquids” by Allen and
Tildesley
Modeling Programs
Spartan (www.wavefun.com)
MacroModel (www.schrodinger.com)
Sybyl (www.tripos.com)
Gaussian (www.gaussian.com)
Jaguar (www.schrodinger.com)
Cerius2 and Insight II (www.accelrys.com)
Quanta
CharMM
GAMESS
PCModel
Amber
Summary
Types of Models
Tinker Toys
Empirical/Classical (Newtonian Physics)
Quantal (Schrodinger Equation)
Semi-empirical
Informatic Modeling
Conformational searching (QSAR, ComFA)
Generating new potentials
Quantum Informatics
Next Time
QSAR (Read Chapter 4)
MMFF Energy
Stretching
Ebond
7
0
2
0 2
K bond (rij r ) * 1 cs(rij rij )
cs (rij rij )
12
0 2
ij
MMFF Energy
Bending
Eangle K (ijk ) * 1 cb(ijk )
0 2
ijk
0
ijk
MMFF Energy
Stretch-Bend Interactions
0
Ebond angle Kijk (rij rij0 ) Kkji (rkj rkj0 ) ijk ijk
MMFF Energy
Torsion (4-atom bending)
Etorsion 0.5V1 1 cos V2 1 cos2 V3 1 cos3
MMFF Energy
Analogous to Lennard-Jones 6-12 potential
London Dispersion Forces
Van der Waals Repulsions
EVDW
7
1.07R
ij
*
Rij 0.07Rij
*
ij
*7
1.07Rij
2
7
*7
Rij 0.07Rij
Intermolecular/atomic
models
General form:
N
N
i j
i j
jk
V V (r) V (ri ,rj ) V (ri ,rj ,rk ) .....
Lennard-Jones
12 6
V (rij ) 4
r r
Van derWaals repulsion
London Attraction
MMFF Energy
Electrostatics (ionic compounds)
D – Dielectric Constant
d- electrostatic buffering constant
qi q j
Eelectrostatic
n
D Rij d