Molecular Bonding Molecular Schrödinger equation r - nuclei s - electrons r 1 2 1 s 2      W  V   0   j i 2  m0 i 1 j 1

Download Report

Transcript Molecular Bonding Molecular Schrödinger equation r - nuclei s - electrons r 1 2 1 s 2      W  V   0   j i 2  m0 i 1 j 1

Molecular Bonding

Molecular Schrödinger equation r - nuclei s - electrons

j r

 

1 1

M j

2

j

1

m

0

i s

 

1

i

2

2 2

W

V

0

M j m

0 = mass of j th nucleus = mass of electron Laplace operator for nuclei

j

Laplace operator for electrons

i V

  

e

2 4



0

r ii

   

j

4



0

r jj

2 2

 

4



0

r ij

electron-electron repulsion nuclear-nuclear repulsion Coulomb potential electron-nuclear attraction

Copyright – Michael D. Fayer, 2007

Born-Oppenheimer Approximation Electrons very light relative to nuclei they move very fast.

In the time it takes nuclei to change position a significant amount, electrons have “traveled their full paths.” Therefore, Fix nuclei - calculate electronic eigenfunctions and energy for fixed nuclear positions.

Then move nuclei, and do it again.

The resulting curve is the energy as a function of internuclear separation.

If there is a minimum – bond formation.

Copyright – Michael D. Fayer, 2007

Born-Oppenheimer Approximation Separation of total Schrödinger equation into an electronic equation and a nuclear equation is obtained by expanding the total Schrödinger equation in powers of

M – average nuclear mass, m 0 - electron mass.

/

1/4 1) Not exact 2) Good approximation for many problems 3) Many important effects are due to the “break down” of the Born-Oppenheimer approximation.

Copyright – Michael D. Fayer, 2007

Born-Oppenheimer Approximate wavefunction

n

x

,

 

n

x

, electronic coordinates nuclear coordinates electronic wavefunction depends on electronic quantum number, n nuclear wavefunction depends on electronic quantum number, n and nuclear quantum number,

 Copyright – Michael D. Fayer, 2007

Electronic wavefunction

n

depends on fixed nuclear coordinates,

.

Obtained by solving “electronic Schrödinger for fixed nuclear positions,

.

equation” No nuclear kinetic energy term.

S

ii

i

2

n

2

M

0 2

U n

n

0 The energy

U n

depends on the nuclear coordinates and the electronic quantum number.

The potential function

complete potential function for fixed nuclear coordinates.

Solve, change nuclear coordinates, solve again.

Copyright – Michael D. Fayer, 2007

Solve electronic wave equation Nuclear Schrödinger equation becomes

j r

 

1 1

M j

2

j

 

n

2 2

E n

,

 

U n n

( )

0

U n

the electronic energy as a function of nuclear coordinates,

, acts as the potential function.

Copyright – Michael D. Fayer, 2007

Before examining the hydrogen molecule ion and the hydrogen molecule need to discuss matrix diagonalization with non-orthogonal basis set.

No interaction

H

0

A

E A A

0

H B

E B B

States have same energy:

E A

E B

E

0 Degenerate With interaction of magnitude

H A

E A

0

B H B

E B

0

A

The matrix elements are

A H A B H A A H B

 

E

0

B H B

E

0

H AA H BA H AB H BB

Copyright – Michael D. Fayer, 2007

Hamiltonian Matrix

H

A B

  

0

B

E

0

    

H AA H BA H AB H BB

 

Matrix diagonalization form secular determinant

E

0

E

0

0 Energy Eigenvalues

    

E E

0 0

 

Eigenvectors

 

1 2

A

1 2

B

 

1 2

A

1 2

B

Copyright – Michael D. Fayer, 2007

Matrix Formulation - Orthonormal Basis Set eigenvalues

j N

 

1

a ij

 

ij

u j

0

i

1, 2

N

vector representative of eigenvector This represents a system of equations

a

11

u

1

2

3

1

 

a

22

u

2

1

3

2

 

a

33

u

3

 

0

0 only has solution if

 

0

a

11

a

21

a

31

   

a

22

a

12

a

32

a

13

a

33

a

23

        

0

  Copyright – Michael D. Fayer, 2007

Basis Set Not Orthogonal Basis vectors not orthogonal

i j

  

ij

0 overlap In Schrödinger representation

 

ij

 

j d

0

j N

 

1

a ij ij

u j

0

i

1, 2

N

system of equations only has solution if ( a ( a

a 11 21

31

      

21 31

)

)

 

( a 12 ( a

 

a 32 22

  

12

  

)

32

) ( a 13

( a 23

a

33

  

13

) 23

  

)

         

0

Copyright – Michael D. Fayer, 2007

For a 2×2 matrix with non-orthogonal basis set

H H BA AA

E

  

E H AB H BB

  

E

E

0

E

eigenvalues overlap integral 0, recover standard 2×2 determinant for orthogonal basis.

E S

H AA

1

H

 

AB E A

H AA

1

H

 

AB

S

A

1 2 2 1

 

A

B

A

B

 Copyright – Michael D. Fayer, 2007

Hydrogen Molecule Ion - Ground State A simple treatment

e–

r

A

r

B H + A

r

AB + H B

Born-Oppenheimer Approximation electronic Schrödinger equation

2

2

m

0 2

 

E

e

2 4



0

r A

e

2 4



0

r B

e

2 4



0

r AB

 

0

2 - refers to electron coordinates electron kinetic energy Have multiplied through by

2m 0 2

Copyright – Michael D. Fayer, 2007

Large nuclear separations

r

AB

System looks like H atom and H + ion Energy

E

E H

 

Rhc

 

13.6 eV Ground state wavefunctions

U

1

s A U

1

s B

Either H atom at A in 1s state or H atom at B in 1s state

U

1

s A

and degenerate

B

Copyright – Michael D. Fayer, 2007

Suggests simple treatment involving

U

1

s A

as basis functions and

U

1

s B

not orthogonal Form 2×2 Hamiltonian matrix and corresponding secular determinant.

H H BA AA

E

  

E H AB H BB

  

E

E

0

E

eigenvalues overlap integral

H AA

 

U

1 *

s A H U

1

s A d

H BA

 

U

* 1

s B H U

1

s A d

  

U U A

1

s B d

H AA

H BB H AB

H BA

Copyright – Michael D. Fayer, 2007

Energies and Eigenfunctions

E S

H AA

1

H

 

AB E A

H AA

1

H

 

AB

S

2 1

U

1

s A

U

1

s B

A

2 1

U

1

s A

U

1

s B

S - symmetric (+ sign ) A - antisymmetric (- sign)

Copyright – Michael D. Fayer, 2007

Evaluation of Matrix Elements Need H AA , H AB , and

H AA

 

U

* 1

s A H U

1

s A d

H

2

2

m

0

e

2 4

 

0

r A

e

2 4



0

r B

e

2 4

 

0

r AB

Part of H looks like Hydrogen atom Hamiltonian

  

2 2

m

0

e

2 4



0

r A

 

U

1

s A

E U H

1

s A

These terms operating on can be set equal to ,

A E U

1

s A E H

- energy of 1s state of H atom.

Copyright – Michael D. Fayer, 2007

Then

H AA

 

*

U

1

s A

 

E H

e

2 4



0

r B

e

2 4



0

r AB

 

U

1

s A d

H AA

E H e

2 4



0

a D

0

J

 

*

U

1

s A

  

e

2 4



0

r B

 

U

1

s A d

(Coulomb Integral)

J

e

2 4



0

a

0

  

1

D

e

2

D

 

1

1

D

   

D

r AB a

0

a

0

0



h e

2 2 distance in units of the Bohr radius

Copyright – Michael D. Fayer, 2007

H BA

 

U

1 *

s B

 

E H

e

2 4



0

r B

e

2 4



0

r AB

 

U

1

s A d

 

E H

e

2 4

 

0

K

 

*

U

1

s B

  

e

2 4



0

r B

 

U

1

s A d

(Again collecting terms equal to the H atom Hamiltonian.) (Exchange integral)

K

 

e

2 4



0

a

0

e

D

1

D

  

e

D

1 1 3

D

2

(K is a negative number) J - Coulomb integral - interaction of electron in 1s orbital around A with a proton at B.

K - Exchange integral – exchange (resonance) of electron between the two nuclei.

Copyright – Michael D. Fayer, 2007

These results yield

E S

E H

e

2 4



0

E A

E H

e

2 4



0

J

K

1

  

J

K

1

 

(K is a negative number) The essential difference between these is the sign of the exchange integral, K.

Also consider

E N

H AA

E H

e

2 4



0

a

0

e

2

D

 

1

1

D

 

Classical no exchange Interaction of hydrogen 1s electron charge distribution at A with a proton (point charge) at B.

Electron fixed on A.

Copyright – Michael D. Fayer, 2007

classical – no exchange

-0.8

repulsive at all distances anti-bonding M.O.

-0.9

E A

E

 

e

2 8



0

a

0

  -1.0

-1.1

E N

D e

E S

-1.2

0 2

r AB

4

D =

r AB a

o 6

r AB

equilibrium bond length

D e

dissociation energy bonding M.O.

8 10

H 1s energy

E H

 

1.0

8

e



2 0

a

0

Copyright – Michael D. Fayer, 2007

This Calc.

Dissociation Energy

D e

1.77 eV (36%) Exp.

2.78 eV Variation in Z' 2.25 eV (19%) Equilibrium Distance

r AB

1.32 Å (25%) 1.06 Å 1.06 Å (0%)

Copyright – Michael D. Fayer, 2007

Hydrogen Molecule

e

2

r

12 e 1

r A

2

r B

2

r A

1 H

A

+

r A B r B

1 H

B

+

In Born-Oppenheimer Approximation the electronic Schrödinger equation is

2 1

 

2 2

2

m

0 2

 

E

e

2 4



0

r A

1

e

2 4



0

r B

1

e

2 4



0

r A

2

e

2 4



0

r B

2

e

2 4



e

2 4



0

r AB

 

0

Copyright – Michael D. Fayer, 2007

r AB

 

, system goes to 2 hydrogen atoms Use product wavefunction as basis functions

I

U

1

s A

(1)

U

1

s B

(2)

II

U

1

s A

(2)

U

1

s B

(1) These are degenerate.

Copyright – Michael D. Fayer, 2007

Form Hamiltonian Matrix

H H I I

H II I H I II H II II

  

H I I H II I

E

 

2

E H I II H II II

 

2

E

E

0 secular determinant

H I I

 

I

*

H

  

I

2

H I II

 

*

I H

II

 

2



 

I II

 

2

H I I

H II II H I II

H II I

Copyright – Michael D. Fayer, 2007

Diagonalization yields

E S

H I I

H I II

1

 

2

E A

H I I

H I II

1

 

2

S

2 1 2

U

1

s A U

1

s B

A

2 1 2

U

1

s A U

1

s B

U

1

s B U

1

s A

U

1

s B U

1

s A

S - symmetric orbital wavefunction A - antisymmetric orbital wavefunction

Copyright – Michael D. Fayer, 2007

Evaluating attraction to nuclei

H I I

 

U

* 1

s A

(1)

U

* 1

s B

(2) 2

E H

e

2 4



0

r B

1

e

2 4



0

r A

2 nuclear-nuclear repulsion Two kinetic energy terms and two electron-nuclear attraction terms comprise 2 H atom Hamiltonians.

e

2 4



e

2 4



0

r AB

 

U

1

s A

(1)

U

1

s B

(2)

 

2 electron-electron repulsion

H I I

2

E H

2

J

J

 

e

2 4



0

r AB

J same as before.

J

 

e

2 4



0

 

U

1

s A

(1)

U

1

s B

(2)

r

12 2

 

1 2

J

 

e

2 4



0

a

0

 

1

D

e

2

D

1

D

11 8

3 4

D

1 6

D

2

  

D

r AB

/

a

0

Copyright – Michael D. Fayer, 2007

H I II

 

U

1 *

s A

(1)

U

* 1

s B

(2) 2

E H

e

2 4



0

r B

1

e

2 4



0

r A

2

e

2 4



e

2 4



0

r AB

 

U

1

s A

(2)

U

1

s B

(1)

 

1 2

H I II

2

E H K K

  

2

e

2 4



0

r AB K

 

e

2 4



0

 

U

1

s A

(1)

U

1

s B

(2)

r

12

U

1

s A

(2)

U

1

s B

(1)

K

 

e

2 20



0

a

0

  

e

2

D

 

25 8

23

D

3

D

2

4 1 3

D

3

K and

same as before.

 

1 2

D

r AB

/

a

0

6

D

2

1og

D

   

2

Ei

 

4

D

 

Ei

 

2

D

     

0.5772

(Euler's constant)

e D

1 1 3

D

2

E i

- integral logarithm math tables, approx., see book.

Copyright – Michael D. Fayer, 2007

J and K - same physical meaning as before.

J - Coulomb integral. Attraction of electron around one nucleus for the other nucleus.

K - Corresponding exchange integral.

J' - Coulomb integral. Interaction of electron in 1s orbital on nucleus A with electron in 1s orbital on nucleus B.

K' - Corresponding exchange or resonance integral.

Copyright – Michael D. Fayer, 2007

Putting the pieces together

E S

2

E H

e

2 4



0

r AB

2

J

J

1

 

2

K K

E A

2

E H

e

2 4



0

r AB

2

J

J

1

 

2

K K

K' is negative.

The essential difference between these is the sign of the K' term.

E N

H I I

2

E H

2

J

J

 

e

2 4



0

r AB

Energy of

I

U

1

s A U

1

s B

No exchange.

Classical interaction of spherical H atom charge distributions.

Charge distribution about H atoms A and B.

Electron 1 stays on A.

Electron 2 stays on B.

Copyright – Michael D. Fayer, 2007

classical – no exchange

-1.6

-1.7

-1.8

E A

repulsive at all distances anti-bonding M.O.

-1.9

This Calc.

-2

E N

-2.1

D e

E S

-2.2

r AB

-2.3

0.5

1.5

2.5

D =

r AB a

o 3.5

Dissociation Energy

D e

3.14 eV (33%) bonding M.O.

4.5

5.5

2 × H 1s energy

E H

 

1.0

8

e



2 0

a

0 Equilibrium Distance 0.80 Å (8%)

r AB

Exp.

4.72 eV 0.74 Å Variation in Z' 3.76 eV (19%) 0.76 Å (3%) Vibrational Frequency - fit to parabola, 3400 cm -1 ; exp, 4318 cm -1

Copyright – Michael D. Fayer, 2007