Extending Set Theory to Harmonic Topology and Topos Logic 1. Music objects Guerino Mazzola U & ETH Zürich i2musics [email protected] www.encyclospace.org 2.
Download ReportTranscript Extending Set Theory to Harmonic Topology and Topos Logic 1. Music objects Guerino Mazzola U & ETH Zürich i2musics [email protected] www.encyclospace.org 2.
Extending Set Theory to Harmonic Topology and Topos Logic 1. Music objects Guerino Mazzola U & ETH Zürich i2musics [email protected] www.encyclospace.org 2. Why topoi? 3. Logic music objects The address question (ontology): What is an elementary musical object? music objects H —EHLD —4 (space of note events) x D L E p Ÿ12 (space of pitch classes) music objects F x — 0 1 x: — F affine x = et.g, et = translation, g = linear A = R-module = „address“ A@F = eF.LinR(A, F) A=R=— —@F = eF.Lin—(—, F) ª F2 music objects Dodecaphonic Series Ÿ12 S Webern: Op. 28 0 R = Ÿ, A = Ÿ11, F = Ÿ12 A@F = Ÿ11@Ÿ12 S Ÿ11@Ÿ12 ª Ÿ1212 11 music objects Key E Zur Anzeige w ird der QuickTime™ Dekompressor „“ benötigt. Position gesture H h score E L l e music objects Grand Unification Perspectives of Harmony and Counterpoint et music objects A et.A S(3) T(3) k et k modulation S(3) T(3) = „cadence + symmetry “ IVC IIEb music objects VIIEb IIC M(3) VC VIIC VEb IIIEb Schönberg‘s Modulation Degrees C(3) E b(3) music objects Circel chords (G. Mazzola, Geometrie der Töne) c c=0 f = e7.3 {c, f(c), f2(c),...} = {0, 4, 7} = {c, e, g} = major triad Ÿ12 e7.3 e g e7.3 < f, c > = {1, c, f, f.c, c.f , f2.c, c2.f,...} Ÿ12@Ÿ12 |< e7.3, e0.0 >| = {0, 4, 7} music objects Modeling Riemann Harmony (Th. Noll, PhD Thesis) Dominant Triad {g, h, d} Tonic Triad {c, e, g} Dt Tc f Trans(Dt,Tc) = < f:Dt Tc > Ÿ12@Ÿ12 „relative consonances“ music objects Ÿ12 Ÿ3 Ÿ4 11 0 1 2 10 3 9 8 z ~> (z mod 3, -z mod4) 4.u+3.v <~ (u,v) 4 7 6 5 8 11 4 3 7 0 5 6 2 9 1 10 Ÿ12 music objects Ÿ12[e]= Ÿ12[X]/(X2) c+e.d c c+e.Ÿ12 music objects Ke = Ÿ12+e.{0,3,4,7,8,9} = consonances ee.2.5 De = Ÿ12+e.{1, 2, 5, 6, 10, 11} = dissonances music objects Parallels of fifths are always forbidden music objects K e, D e ƒe Ÿ12 add.ch Ÿ12[e] Trans(Dt,Tc) = Trans(Ke,Ke)|ƒe Ÿ12@Ÿ12 Ÿ12 [e]@Ÿ12 [e] ƒe Trans(Dt,Tc) add.ch Trans(Ke,Ke) music objects Prize for parametrization addresses: Parametrized objects need parametric evaluation! address A space F music objects K —@F F = —EH ª —2 H E f10: 0— —: 0 ~> 10 music objects series S Ÿ11@Ÿ12 Ÿ12 S Webern: Op. 28 0 11 More general: set of k sequences of pitch classes of length t+1 K = {S1,S2,...,Sk} This is a „polyphonic“ local composition Ÿ12 K Ÿt@Ÿ12 S1 Sk music objects Ÿ12 S1 Sk s ≤ t, define affine map f: Ÿs Ÿt e0 ~> ei(0) e1 ~> ei(1) ................. es ~> ei(s) f@K Ÿ12 S1.f Sk.f es e0 e1 Ÿs music objects Gegenstand der Untersuchungen sind aber nicht die Töne selbst, denn deren Beschaffenheit spielt gar keine Rolle, sondern die Verknüpfungen und Verbindungen der Töne untereinander. Bach‘s „Art of Fugue“ (1924) Wolfgang Graeser (1908—1928) music objects Need recursive combination of constructions such as „sequences of sets of sets of curves of sets of chords“, etc. This leads to the theory of denotators, which we omit here. Eine kontrapunktische Form ist eine Menge von Mengen von Mengen (von Tönen) Bach‘s „Art of Fugue“ (1924) Wolfgang Graeser why topoi? Sets cartesian products X Y disjoint sums X Y powersets XY characteristic maps c:X 2 no „algebra“ Mod@ F: Mod Sets presheaves have all these properties Mod direct products A≈B etc. has „algebra“ no powersets no characteristic maps why topoi? Yoneda Lemma The functorial map @: Mod Mod@ is fully faithfull. M ~> @M = Hom(?,M) M@F ≈ Hom(@M,F) Mod@ Const. Sets @Mod Mod why topoi? Functorial Local Compositions Are left with two important problems for local compositions K A@F: • The definition of a general evaluation procedure; • There are no general fiber products for local compositions. Solution: A@WF = {subfunctors a @A F} „generalized sieves“ Kˆ @A F X@Kˆ = {(f:X A, k.f), k K} X@A X@F Kˆˇ = IdA@Kˆ = K logic Hugo Riemann: Logik ist in der Funktionstheorie ein fundamentaler, aber dunkler Begriff. Classical logic: F = 0 = zero module subsets d 0@F = 0@0 = {0} Have two values: d = 0@0 = T, “true” d = = F = T, “false” Fuzzy logic: F = S = —/Ÿ = circle group subsets d = [0, e[ 0@F = 0@S This logic is known as the Gödel algebra, in fact a Heyting algebra defined by the topology of these subsets. e S logic Have natural generalization! d 0@0 d = [0, e[ 0@S F = any space (functor) A = any address d A@F d @A F objective local composition functorial local composition In this context, local compositions d are structurally legitimate supports of logical values and their combinations (conjunction, disjunction, implication, negation). logic The „functorial“ change K ~> Kˆ has dramatic consequences for the global theory! II A = 0Ÿ I II III IV V VI V VII VI I VII A = Ÿ12 IV X Ÿ12 ~> III X* = End*(X) Ÿ12@Ÿ12 logic IIII* VI VI* VV* IV* IV II* VII* VII ToM, ch. 25 III* III I* I* II* = Ÿ12@Ÿ12 II* logic @Ÿ12 I* f@I*ˆ e0.4 I*ˆ II* f@I*ˆf@II*ˆ e11.3 II*ˆ f@II*ˆ @Ÿ12 1Ÿ12 f = e11.0: Ÿ12 Ÿ12 e0.4.e11.0 = e11.3.e11.0 = e8.0 e8.0 logic Extension Topology Fix a space functor F, End(F) = set of endomorphisms of F, and an address A. ExTopA(F) = A@WF = {a @A F} Extension topology on ExTopA(F): Subsets M End(F), Basic open sets: ExtA(M) = {a, M End(a)} logic Naturality of Extension Topologies Proposition: Fix a space functor F two addresses A, B, and a retraction a: A B. Then we have this continuous map: .a ExTopB(F) a ExTopA(F) @B F @a IdF a.a @A F logic Naturality of Heyting Logic of Open Sets .a ExTopB(F) UV UV UV U Proposition: OpenB(F) ExTopA(F) = UV = UV = WUV W = (-U)o .a-1 OpenA(F) is a logical homomorphism .a-1 (UV) (.a-1 (U) .a-1 (V)) .a-1 (UV (.a-1 (U) .a-1 (V)) .a-1 (UV) (.a-1 (U) .a-1 (V)) Birkhäuser 2002 1368 pages, hardcover incl. CD-ROM € 128.– / CHF 188.– ISBN 3-7643-5731-2 English www.encyclospace.org