An outline of the GTS & the Improved MTN project for FWIS ISS/ITT-FWIS 2003 (Kuala Lumpur, 20-24 October 2003) By Hiroyuki Ichijo Japan Meteorological.
Download ReportTranscript An outline of the GTS & the Improved MTN project for FWIS ISS/ITT-FWIS 2003 (Kuala Lumpur, 20-24 October 2003) By Hiroyuki Ichijo Japan Meteorological.
An outline of the GTS & the Improved MTN project for FWIS ISS/ITT-FWIS 2003 (Kuala Lumpur, 20-24 October 2003) By Hiroyuki Ichijo Japan Meteorological Agency 1. Structure of the GTS (Global Telecommunication System) NMTN NMTN NMTN MTN = Core of the GTS managed by MTN centres in cooperation with WMO NMTNs National Meteorological Telecommunication Networks NMTN NMTN RMTN in RA VI NMTN RMTN in RA II NMTN RMTN managed by each Regional Association NMTN RMTNs Regional Meteorological Telecommunication Networks RMTN in RA IV National level network managed by each Member MTN Main Telecommunication Network RMTN in RA III NMTN RMTN in RA I NMTN Centre classification RTH NMTN NMTN RMTN in RA V NMTN NMTN NMC NMTN NMTN MTN Centres (RTHs on the MTN) RTHs (Regional Telecommunication Hubs) NMCs (National Meteorological Centres) 2. MTN configuration Region VI Region I Region II Region IV Region V MTN (Main Telecommunication Network) consists of 18 MTN Centres and 24 connections. Region III Regional plan : 78 circuits Implemented : 67 circuits Implementation rate : 86 % 3. Regional aspect : Region II case RTH in Region II NMC in Region II Centre in other region 19.2-33.6K (V.34) NI NI NI Id V.34 NI 2.4K 64K 50 Jeddah 64K Internet 64K 9.6K Internet Internet Cairo Offenbach NI Frame Relay CIR<32/32K> Beijing Frame Relay CIR<32/32K> Doha 1200 128K 50 75 Moscow Internet Emirates 100 Internet Male Washington Colombo Melbourne 9.6K Vientiane Frame Relay CIR<16/16K> Yangon 50 200 64K 1200 Bangkok 75 Current Status of RMTN in RA II (As of 10 September 2003) 200 Macao Dhaka 50 200 ISDN 100 Internet Sanaa Hong Kong Hanoi 75 Cairo Muscat 2.4K 50 Frame Relay CIR<16/16K> 75 Kathmandu NI Seoul 64K 64K New Delhi 200 Frame Relay CIR<16/16K> 9.6K 64K Karachi Bahrain Tokyo 75 75 IMTN-MDCN Frame Relay CIR<48/48K> Kabul 100 14.4K PyongYang NI Kuwait 64K Algiers 4.8K Dushanbe NI 19.2-33.6K (V.34) 9.6K Ulaanbaatar Tashkent Id V.34 Tehran NI 50 Bishkek NI Baghdad 19.2-33.6K (V.34) IMTN-MDCN CIR<32/768K> Khabarovsk 19.2-33.6K (V.34) via Moscow 19.2-33.6K (V.34) Almaty 19.2-33.6K V.34 Ashgabad 19.2-33.6K (V.34) Novosibirsk 19.2-33.6K (V.34) Offenbach 7.2K Washington 64K MTN circuit Regional circuit Interregional circuit Additional circuit No implementation Non-IP link IP link NI 64K Moscow 2.4K Singapore Frame Relay CIR<16/16K> IMTN-MDCN CIR<16/32K> Manila NI Phnom Penh Melbourne Kuala Lumpur 19 Upgrade Plans of RMTN in RA II within 2 years RTH in Region II NMC in Region II Centre in other region 64K Moscow MTN circuit Regional circuit Interregional circuit Additional circuit NI 19.2-33.6K (V.34) No implementation V.34 Ashgabad V.34 NI Tashkent Tehran NI NI IMTN-MDCN 64K Internet 50 Kuwait 64K 64K 200 Doha 64K 64K Frame Relay CIR<16/16K> 9.6K Internet New Delhi 64K 128K 75 Internet Sanaa Male 50 Frame Relay CIR<16/16K> 64K 1200 Bangkok 64K Plans of RMTN in RA II for 2003-2005 9.6K Vientiane 64K Frame Relay CIR<16/16K> Singapore 200 Macao Yangon Colombo Melbourne ISDN Hanoi Internet Internet Hong Kong 100 Dhaka Internet Frame Relay CIR<16/16K> Moscow 2.4K 75 Seoul 64K CIR<16/16K> Kathmandu Internet Washington Offenbach Internet 64K Frame Relay CIR<32/32K> Internet Muscat Cairo IMTN-MDCN CIR<48/48K> Beijing IMTN-MDCN CIR<48/48K> 64K Emirates Tokyo 75 IMTN-MDCN 64K Cairo Algiers CIR<8/8K> Dushanbe Kabul Karachi Bahrain 1200 Internet PyongYang 75 NI 100 64K (V.34) 9.6K IMTN-MDCN NI IMTN-MDCN CIR<32/768K> Ulaanbaatar 7.2-9.6K Baghdad Internet V.34 V.34 Offenbach 50 64K Bishkek Khabarovsk (V.34) via Moscow V.34 Almaty Internet 64K Novosibirsk 64K Non-IP link IP link Jeddah Washington 64K Frame Relay CIR<16/16K> Manila 9.6K Phnom Penh Kuala Lumpur Melbourne 100% 3 10 More than 9600bps 11 18 75% 25 22 18 33 18 2400 to 9600 (inclusive) less than 2400bps 15 9 50% 5 38 33 25% 32 28 28 21 0% Feb 1997 Aug 1999 Sep 2000 Jan 2002 Aug 2003 2005 (plan) Progress of improvement in circuit speed in RA II Low speed circuits are still more than half. It is a problem. The number of circuits number of circuits 50 Additional circuits Interregional circuits 40 Regional circuits MTN circuits 30 20 10 0 Feb 1997 Aug 1999 Sep 2000 Jan 2002 Aug 2003 Progress in migration to TCP/IP in RA II Achievement rate : about 35% ( as of August 2003) Estimation rate : about 55% by the end of 2005 2005 (plan) 4. Strategies to improve the GTS • Expanding bandwidth • Flexible connectivity • Saving recurrent cost Use of cost-effective networks Leased circuits • Internet like applications • Saving implementation costs and human resources • allowing latitude in selecting a network service Improved GTS Migration to TCP/IP Legacy protocols Strengthen the overall GTS capabilities with cost-effectiveness and technical trends Strategies Traditional GTS Layer separation concepts File transfer Adding applications Server/client Migration to TCP/IP Application level Message Switching TCP/IP Legacy protocol File transfer Server/client Transmission protocol level Frame Relay IP-VPN Use of cost-effective networks Transport level Message Switching TCP/IP Legacy protocol Logical connectivity of managed data-communication network Office A Office B Network cloud Office C Expand the capacity between A and B Establish a new connection between B and C Network user Yes sir! We do everything in network management! Network supplier Example of the Improved GTS : East Asian triangles Tokyo Tokyo Asynchronous 200bps X.25 64kbps Hong Kong Hong Kong X.25 64kbps Frame Relay Network Seoul X.25 9600bps Seoul X.25 9600bps Beijing Upgrade items: 1) Migration to TCP/IP 2) Use of Frame Relay Network Beijing Benefit of the Hong Kong-Tokyo upgrade Hong Kong Performance Monthly running costs Tokyo Before the upgrade After the upgrade Before the upgrade After the upgrade HK$ 12,743 HK$ 7,470 212,560 yen 165,020 yen Cost saving of HK$ 5,273 (about US$ 677) a month Cost saving of 47,540 yen (about US$ 450 ) a month 200 bps 16 kbps (CIR) nearly 64 kbps (at a burst) 200 bps 16 kbps (CIR) nearly 64 kbps (at a burst) Holding transmission queues Sometimes Rarely Always Rarely Transmission delay 50 sec. (average) 72 min. (maximum) 1 sec. (average) 20 sec. (maximum) 880 sec. (average) 130 min. (maximum) 6 sec. (average) 69 sec. (maximum) Receiving condition Good but occasionally receiving garbled messages by biterror Transmission speed Excellent Mostly good but sometimes receiving garbled messages by biterror Excellent 5. Status on the Improved MTN (IMTN) The IMTN project is making satisfactory progress. The planned configuration will be achieved in 2004 except for a few MTN centres in Regions I and III. Cloud I Frame Relay by BT Ignite Beijing Tokyo Melbourne Washington Brasilia Buenos Aires Prague New Delhi Sofia Moscow Bracknell Jeddah Cloud II Offenbach Frame Relay by Equant Nairobi Dakar Cairo Toulouse Algiers Specific characteristics of IMTN clouds a) b) c) Flexibility of establishing logical connections (PVC) on an access circuit Asymmetric bandwidths (CIR: Committed Information Rate) Better performance than CIR with minimum delay (Turnaround time by SLA) PVC Access circuit 1.5Mbps CIR= 768kbps Tokyo 32kbps 1.5Mbps Washington 16kbps Cloud I Frame Relay 32kbps 16kbps 32kbps 32kbps 16kbps Bracknell Melbourne 256kbps 32kbps 64kbps 256kbps Washington to Tokyo (CIR=768kbps) [Mbytes/20 min] Unbalanced traffic with Asymmetric CIRs (3 October 2003) 60 50 40 File 30 384kbps line (Half of CIR) FAX BIN AN 20 10 0 00 03 06 09 12 15 18 21 [UTC] Traffic status on the GTS (Example of daily volume received at RTH Tokyo) From Washington Data (CIR=768kbps) WWW data and products in message type Large satellite data Total Utilisation rate on the CIR basis [on practical basis] From Melbourne (CIR=32kbps) From other GTS circuits AN 43Mbytes 3Mbytes 4Mbytes Binary 84Mbytes 6Mbytes 2Mbytes T4 fax 2Mbytes 1Mbytes 1Mbytes 1063Mbytes 15Mbytes 1192Mbytes 25Mbytes 14.4% [11%] 7.2% [3%] File --7Mbytes 6. Prospect of IMTN evolution for FWIS Transition environment for pilot tests and parallel operations Option 1) coexistence of test connections with GTS operational connections on a PVC Easy way but sharing CIR bandwidth of a PVC Option 2) Separation of PVCs for GTS operational and test Minimum impact to GTS operation but additional PVC cost Possible evolution into IP-VPN One of VPN services is IP-VPN which is different in backbone management from Internet VPN. IP IP Label VPN group IP Label IP Core Router CE PE Closed IP network by a provider VPN group CE PE Core Router PE CE CE Core Router Provider’s PEs and Core Routers based on MPLS have Label Tables and switch IP packets forward according to the Tables. CE : Customer Edge Router PE : Provider Edge Router VPN : Virtual Private Network MPLS : Multi Protocol Label Switching IP-VPN with MPLS IP ESP AH IP IPsec Product IP ESP AH IP Internet IPsec Product VPN group VPN group IPsec Product IPsec VPN products add/remove the ESP for encryption and encapsulation and the AH for authentication to/from an IP packet. ESP : Encapsulation Secure Payload AH : Authentication Header Internet VPN with IPsec 7. Administrative aspect of the improved MTN Traditional method : bilateral contract/billing Frame Relay Network X Frame Relay Network NNI Y Collaborative method : one-stop concept & multi-end billing Tentative conclusions • The IMTN can become a core transport network linking GISCs together. • In 2006, if a GISC will have connections of 1 – 1.5Mbps with other GISCs, expected recurrent monthly cost for the GISC could be US$ 5000 x ((a number of GISCs) - 1). • The IMTN can provide the environment for a test-bed and parallel operations In transition periods. • The IMTN seems to be available for connections among GISCs, DCPCs and NCs as long as the administrative hurdles could be cleared.