NuInt 09: Theory highlights Luis Alvarez-Ruso Universidade de Coimbra NuInt Series NuInt: International Workshop on Neutrino-Nucleus Interactions in the Few GeV Region NuInt 01: Tsukuba,
Download
Report
Transcript NuInt 09: Theory highlights Luis Alvarez-Ruso Universidade de Coimbra NuInt Series NuInt: International Workshop on Neutrino-Nucleus Interactions in the Few GeV Region NuInt 01: Tsukuba,
NuInt 09: Theory highlights
Luis Alvarez-Ruso
Universidade de Coimbra
NuInt Series
NuInt: International Workshop on Neutrino-Nucleus Interactions
in the Few GeV Region
NuInt 01: Tsukuba, Japan
NuInt 02: UC Irvine, USA
NuInt 04: Gran Sasso Lab., Italy
NuInt 05: Okayama U., Japan
NuInt 06: Fermi Lab., USA
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
NuInt 09
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
NuInt 09
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Scientific Program
Motivation
Confronting theory, models and data
Electron scattering and its connections to neutrino-nucleus interactions
Current and future neutrino experiments
Charged Current and Neutral Current quasi-elastic scattering
Single pion production
Deep and not-so-deep inelastic scattering
The path forward: theory vs. experiments needs
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Scientific Program
Motivation
Confronting theory, models and data
Electron scattering and its connections to neutrino-nucleus interactions
Current and future neutrino experiments
Charged Current and Neutral Current quasi-elastic scattering
Single pion production
Deep and not-so-deep inelastic scattering
The path forward: theory vs. experiments needs
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Motivation
º – Nucleus interactions are important for:
Oscillation experiments Tanaka@NuInt09
Precision measurements of ¢m2, sin2 2µ in º¹ disappearance )
Understanding Eº reconstruction is critical
Kinematical determination of Eº in a CCQE event º ¹ n !
2mn E ¹ ¡ m2¹ ¡ m2n + m2p
Eº =
2(m n ¡ E ¹ + p¹ cosµ¹ )
¹¡ p
exact only for free nucleons
wrong for CCQE-like events
Rejecting CCQE-like events relies on accurate knowledge of FSI (¼, N
propagation, ¼ absorption)
Searches for º¹ ! ºe (µ13)
Electron-like backgrounds:
NC ¼0 production (incoherent, coherent)
Photonuclear absorption (eliminates one ° in ¼0 ! ° ° )
Photon emission in NC
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Motivation
º – Nucleus interactions are important for:
Astrophysics
Balantekin@NuInt09
Production and detection of (low energy) solar and supernova º
º reactions in supernova core collapse
Nucleosynthesis (r-processes)
Physics beyond standard model
Deviations from universality in the Zºº and W¹º¹ vertices could be
accessed in DIS experiments at TeV energies Balantekin
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Motivation
º – Nucleus interactions are important for:
Hadronic physics
Nucleon and Nucleon-Resonance (N-¢, N-N*) axial form factors
MINERvA: first precision measurement of axial nucleon ff at Q2>1 GeV.
Deviations from the dipole form?
Strangeness content of the nucleon spin (isoscalar coupling GsA):
probed in NCQE reactions º ¹ (p; n) ! º ¹ (p; n)
Best experimental sensitivity in ratios: NCQE(p)/NCQE(n) or NC(p)/CCQE
Experiments are performed with nuclear targets )
nuclear effects are essential for the interpretation of the data.
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Motivation
º – Nucleus interactions are important for:
Nuclear physics
Excellent testing ground for nuclear many-body mechanisms, nuclear
structure and reaction models
Relativistic effects
Nuclear correlations
Meson exchange currents (MEC)
Nucleon and resonance spectral functions
”Neutrino cross sections incorporate a richer information on nuclear
structure and interactions than electrons” Amaro@NuInt09
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
º cross sections
Tanaka@NuInt09
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Theoretical tools
How can neutrino cross sections be calculated?
At low energies Eº . 200 MeV
Adapted from Balantekin@NuInt09
Effective field theory (for · 3 nucleons)
Non-relativistic many-body theories: Shell model, RPA
At intermediate energies 200 MeV . Eº . 5 GeV
(Relativistic) Fermi gas (for medium to heavy nuclei)
Hadron spectral functions functions (N, ¼, ¢(1232), N*)
(Super)scaling
At high energies Eº & 5 GeV
Quark-hadron duality
Parton distribution functions (PDF)
Perturbative QCD and DGLAP
The regions of validity are not well established
(!, q) ( better variables
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
1. These techniques have been applied to electron-nucleus reactions
lepton
How can neutrino cross sections be calculated?
At low energies Eº . 200 MeV
Effective field theory (for · 3 nucleons)
Non-relativistic many-body theories: Shell model, RPA
At intermediate energies 200 MeV . Eº . 5 GeV
(Relativistic) Fermi gas (for medium to heavy nuclei)
Hadron spectral functions functions (N, ¼, ¢(1232), N*)
(Super)scaling
At high energies Eº & 5 GeV
Quark-hadron duality
Parton distribution functions (PDF)
Perturbative QCD and DGLAP
The regions of validity are not well established
(!, q), (x,Q2) ( better variables
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
1. These techniques have been applied to electron-nucleus reactions
2. Large set of inclusive electron-nucleus scattering data
SLAC, MIT/Bates, ELSA, MAMI, JLab
Several targets: A=1-208
Different kinematics (!, q)
) crucial test for any º-nucleus model
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
3. Nucleon, N-¢, N-N* e.m. form factors are extracted from e-p, e-d data
For the nucleon
¡ ¹ = ° ¹ F1N (q2 ) +
i
2m N
¾¹ º qº F2N (q2 )
V
For º scattering one needs F12
p
n
= F12
¡ F12
q2
GE = F1 +
F2 Ã electric ff
2mN
GM = F1 + F2 Ã magnetic ff
GE and GM exhibit different q2 dependence
) BBBA parametrization
The study of nucleon electric form factors
at large Q2 (5.2-8.5 GeV2) continues at JLab
with the recoil polarization method (Rosenbluth
separation technique does not work) Brash@NuInt09
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
3. Nucleon, N-¢, N-N* e.m. form factors are extracted from e-p, e-d data
For N-Resonance transitions
Unitary isobar model MAID has been used to extract N-R helicity
amplitudes (A1/2, A3/2, S1/2) from world data on ¼ photo- and electroproduction for all 4 star resonances with W<2 GeV
Drechsel, Kamalov, Tiator, EPJA 34 (2007) 69
q
A 1=2 =
A 3=2 =
S1=2 =
¯+ ¹ ¯
®
¯
¯
R; J z = 1=2 ² ¹ J EM N ; J z = ¡ 1=2 ³
q
¯+ ¹ ¯
®
2¼®
¯
¯
R; J z = 3=2 ² ¹ J EM N ; J z = 1=2 ³
kR
q
¯0 ¹ ¯
®
2¼® pj q j
¡
R; J z = 1=2 ¯² ¹ J EM ¯N ; J z = 1=2 ³
kR
2
2¼®
kR
-
Q
Helicity amplitudes ) Vector form factors
MAID also contains non-resonant ¼ production
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
3. Nucleon, N-¢, N-N* e.m. form factors are extracted from e-p, e-d data
For the N-Resonance transitions
Example N-¢(1232)
N-¢(1232) is not a pure M1 transition , A3/2 3 A1/2 , S1/2 0
Consequence for º scattering:
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
3. Nucleon, N-¢, N-N* e.m. form factors are extracted from e-p, e-d data
For the N-Resonance transitions
Example N-¢(1232)
Consequence for º scattering:
N-¢ axial ff should be refitted
L. Alvarez-Ruso, Universidade de Coimbra
Leitner@NuInt09
NuFact 09
Electron scattering
Inclusive electron-nucleus scattering at intermediate energies
Relativistic Global Fermi Gas Smith, Moniz, NPB 43 (1972) 605
Impulse Approximation
f (~
r;p
~) = £ (pF ¡ j~
pj)
Fermi motion
Pauli blocking
PPauli = 1 ¡ q
£ (pF ¡ j~
pj)
Average binding energy E = p
~2 + m2N ¡ ² B
Explains the main features of the inclusive cross sections in the QE region
Ankowski@NuInt09
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
Inclusive electron-nucleus scattering at intermediate energies
Relativistic Global Fermi Gas Smith, Moniz, NPB 43 (1972) 605
However
GFG overestimates the longitudinal response RL
“FG is certainly too simple to be right. Nuclear dynamics must be
included in the picture” Benhar@NuInt09
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
Inclusive electron-nucleus scattering at intermediate energies
Spectral functions of nucleons in nuclei
The nucleon propagator can be cast as
Z
G(p) =
Sh (! ; p
~)
d! 0
+
p ¡ ! ¡ i´
Z
Sp (! ; p
~)
d! 0
p ¡ ! ¡ i´
Sh(p) Ã hole (particle) spectral functions: 4-momentum (p)
distributions of the struck (outgoing) nucleons
1
Im§ (p)
Sp;h (p) = ¡
¼[p2 ¡ M 2 ¡ Re§ (p)]2 + [Im§ (p)]2
§ Ã nucleon selfenergy
Can be extended to the excitation of resonances in nuclei
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
Inclusive electron-nucleus scattering at intermediate energies
Spectral functions of nucleons in nuclei
Hole spectral function: Ankowski,Benhar@NuInt09
80-90 % of nucleons occupy shell model states
The rest take part in the NN interactions (correlations); located at high
momentum
n(~
p) =
R
d! Sh (! ; p
~)
Meloni@NuInt09
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
Inclusive electron-nucleus scattering at intermediate energies
Spectral functions of nucleons in nuclei
Hole spectral function: Ankowski,Benhar@NuInt09
80-90 % of nucleons occupy shell model states
The rest take part in the NN interactions (correlations); located at high
momentum
Particle spectral functions
Optical potential
Glauber approximation (straight trajectories, frozen spectators)
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
Inclusive electron-nucleus scattering at intermediate energies
Spectral functions of nucleons in nuclei: Results Ankowski@NuInt09
40Ca
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
Inclusive electron-nucleus scattering at intermediate energies
Spectral functions of nucleons in nuclei: Results Ankowski@NuInt09
40Ca
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
Inclusive electron-nucleus scattering at intermediate energies
Spectral functions in a Local Fermi Gas
LAR,Leitner@NuInt09
pF (r ) = [ 32 ¼2 ½(r )]1=3
OK for medium/heavy nuclei
Microscopic many-body effects are tractable
Can be extended to exclusive reactions: (e,e’ N), (e,e’ ¼), etc
Hole spectral function: Im§ ¼ 0
2
r;p
~)
Sh (p) ! ±(p2 ¡ M e®
) M e® = M + U(~
The correlated part of SL is neglected
Particle spectral functions
Im§ = ¡
p
Density and momentum
à dependent mean field
potential
Gil, Nieves, Oset, NPA627
Ciofi degli Atti et al.,PRC41
(p2 )¡ coll (p; r ) ; ¡ coll = h¾N N vrel i
à Collisional broadening
GiBUU
Re§ is obtained from Im§ with a dispersion relation
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
Inclusive electron-nucleus scattering at intermediate energies
Spectral functions in a Local Fermi Gas:
Results
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
Good description of the dip region requires the inclusions of 2p2h
contributions from MEC Gil, Nieves, Oset, NPA627
Important for º: source of CCQE-like events
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
Relativistic mean field Giusti,Udias@NuInt09
Impulse Approximation
Initial nucleon in a bound state (shell)
ªi : Dirac eq. in a mean field potential (!-¾ model)
Final nucleon
PWIA
RDWIA: ªf : Dirac eq. for scattering state
Complex optical potential
Glauber
Has been used to study 1N knockout
Problem: nucleon absorption that reduces the c.s.
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
Relativistic mean field
RPWIA
RDWIA
RPWIA
RDWIA
Giusti@NuInt09
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
Relativistic mean field Giusti,Udias@NuInt09
Impulse Approximation
Initial nucleon in a bound state (shell); no correlations
ªi : Dirac eq. in a mean field potential (!-¾ model)
Final nucleon
PWIA
DWIA: ªf : Dirac eq. for scattering states
Complex optical potential
Glauber
Has been used to study 1N knockout
Problem: nucleon absorption that reduces the c.s.
Problem: hard to include resonance excitation…
Gent: ¢(1232) in PWIA
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
Green function approach
Giusti@NuInt09
QE
“The imaginary part of the optical potential is responsible for the
redistribution of the flux among the different channels”
Suitable for inclusive and exclusive scattering
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
Green function approach
Giusti@NuInt09
16O(e,e’)X
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
Green function approach Giusti@NuInt09
Problem: RT is underestimated (lack of more complicated effects: MEC)
12C(e,e’)X
Meucci et al., PRC 67 (2003)
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
(Super)scaling Barbaro,Amaro,Udias,Giusti@NuInt09
F (! ; j~
qj) =
d¾
d- d!
Z ¾ep + N ¾en
First kind scaling: F = F (Ã0(! ; j~
qj))
12C
)
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
(Super)scaling Barbaro,Amaro,Udias,Giusti@NuInt09
F (! ; j~
qj) =
d¾
d- d!
Z ¾ep + N ¾en
First kind scaling: F = F (Ã0(! ; j~
qj))
Second kind scaling: f
(Ã0) = pF F (Ã0) independent of A
First + Second scaling = Superscaling
Ã’ < 1 scaling region
Ã’ > 1 scaling violation
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
(Super)scaling Barbaro,Amaro,Udias,Giusti@NuInt09
Scaling violations reside mainly in the transverse channel
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
(Super)scaling Barbaro,Amaro,Udias,Giusti@NuInt09
The experimental superscaling function (fit using RL data)
Constrain for nuclear models
Relativistic Fermi Gas
Exact superscaling
Wrong shape of f(Ã’)
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
(Super)scaling Barbaro,Amaro,Udias,Giusti@NuInt09
The experimental superscaling function (fit using RL data)
Constrain for nuclear models
Relativistic mean field describes the asymmetric shape of f(Ã’)
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
(Super)scaling Barbaro,Amaro,Udias,Giusti@NuInt09
Superscaling in the ¢ region
Experimental superscaling function
At Ã’¢ > 1 other resonances, etc contribute
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
(Super)scaling Barbaro,Amaro,Udias,Giusti@NuInt09
Superscaling Analysis SUSA
Calculate with Relativistic Fermi Gas
Replace fRFG ! fexp
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
(Super)scaling Barbaro,Amaro,Udias,Giusti@NuInt09
Superscaling Analysis SUSA
Calculate with Relativistic Fermi Gas
Replace fRFG ! fexp
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Electron scattering
(Super)scaling Barbaro,Amaro,Udias,Giusti@NuInt09
Superscaling Analysis SUSA for º-A
Calculate with Relativistic Fermi Gas
Replace fRFG ! fexp
SUSA: ~ 15 % reduction of ¾ with respect to RFG
Scaling approach fails at !.40 MeV, |q|.400 MeV: collective effects
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
º QE scattering
The (CC) elementary process:
º ¹ (k) n(p) ! ¹ ¡ (k0) p(p0)
GF cosµC ®
p
M =
l J®
2
where l ® = u
¹ (k0)° ®(1 ¡ ° 5 )u(k)
£
J® = u
¹ (p ) ° ®F1V +
0
i
2M
µ
Form factors: FA (Q ) = gA
2
dipole ansatz
¯
¾®¯ q
F2V
2
Q
1+
M A2
¶¡
+ ° ¹ ° 5 FA +
2
q¹
M
¤
° 5 FP u(p)
2M 2
2
; FP (Q ) = 2
F
(Q
)
A
2
Q + m¼
2
PCAC
gA = 1.26 Ã ¯ decay
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
º QE scattering
The (CC) elementary process:
µ
¶¡ 2
2
Q
FA (Q2 ) = gA 1 +
M A2
º ¹ (k) n(p) ! ¹ ¡ (k0) p(p0)
MA: MA= 1.026 § 0.021 (world average from º scattering)
MA= 1.069 § 0.016 (¼ electroproduction close to threshold)
At low q2, this difference can be understood with ÂPT:
µ
FA (q2 ) = gA
¶
1 2 2
12
2
1 + hr A i q + ¢¢¢ ) hr A i =
6
MA 2
µ
hr A2 i e
=
hr A2 i º
¶
3
12
+
1 ¡ 2 ) ¢ M A = 0:055 GeV
64f ¼
¼
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
º QE scattering
Data!
CCQE, NCQE, º, anti-º
MiniBooNE (12C), SciBooNE (16O), MINOS (Fe), NOMAD (12C)
and puzzles…
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
º QE scattering
MiniBooNE: largest sample of low energy º¹ CCQE events to date.
Aguilar-Arevalo et. al., PRL 100 (2008) 032301
The shape of hd¾/dcosµ¹dE¹i is accurately described by the Relativistic
Fermi Gas Model with: EB = 34 MeV, pF = 220 MeV
µq
¶
But
E pmi n = ·
M 2 + p2F ¡ ! + E B ; · = 1:019 § 0:011
MA = 1.23 § 0.20 GeV
Convenient parametrization of
CCQE data
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
º QE scattering
However:
The physical meaning of ϰ is obscure
MA > 1 GeV
ϰ, MA values depend on the background from CC1¼
New analysis using different CC1¼ gets:
MA=1.35 § 0.17 GeV, ϰ=1.007 § 0.007
L. Alvarez-Ruso, Universidade de Coimbra
Katori@NuInt09
NuFact 09
º QE scattering
Spectral functions do not explain the shape of the Q2 distribution
Meloni,LAR@NuInt09
Meloni@NuInt09
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
º QE scattering
RPA long range correlations
LAR@NuInt09
“In nuclei, the strength of electroweak couplings may change from their
free nucleon values due to the presence of strongly interacting nucleons”
Singh, Oset, NPA 542 (1992) 587
For the axial coupling gA :
(gA ) e®
1
=
gA
1 + g0Â0
Â0 dipole susceptibility
g’ Lorentz-Lorenz factor ~1/3
Ericson, Weise, Pions in Nuclei
The quenching of gA in Gamow-Teller ¯ decay is well established
(gA ) e®
» 0:9
gA
Wilkinson, NPA 209 (1973) 470
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
º QE scattering
RPA long range correlations LAR@NuInt09
Following Nieves et. al. PRC 70 (2004) 055503 :
VN N = ~
¿1~
¿2 ¾1i ¾2j [^
qi q
^j VL (q) + (±i j ¡ q
^i q
^j )VT (q)] + g~
¾1~
¾2 + f 0~
¿1~
¿2 + f I 1 I 2
In particular
( µ
)
¶
2
2
2 2
2
fNN¼
¤ ¼ ¡ m¼
q
~
0
VL =
+
g
m2¼
¤ 2¼ ¡ q2
q2 ¡ m2¼
¼ spectral function changes in the nuclear medium ) so does J ®A
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
º QE scattering
RPA long range correlations LAR@NuInt09
Following Nieves et. al. PRC 70 (2004) 055503 : Describes correctly
¹ capture on 12C
and LSND CCQE
VN N = ~
¿1~
¿2 ¾1i ¾2j [^
qi q
^j VL (q) + (±i j ¡ q
^i q
^j )VT (q)] + g~
¾1~
¾2 + f 0~
¿1~
¿2 + f I 1 I 2
In particular
( µ
)
¶
2
2
2 2
2
fNN¼
¤ ¼ ¡ m¼
q
~
0
VL =
+
g
m2¼
¤ 2¼ ¡ q2
q2 ¡ m2¼
¼ spectral function changes in the nuclear medium ) so does J ®A
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
º QE scattering
Comparison to the modified Smith-Moniz ansatz (shape)
All curves are normalized
to the same area
The effect of RPA brings the shape of the Q2 distribution closer to
experiment keeping MA = 1 GeV
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
º QE scattering
But
RPA correlations cause a considerable reduction of the c.s. at low Q2
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
º QE scattering
CCQE c.s. from MiniBooNE
Katori@NuInt09
¾ considerably larger than the RFG prediction with MA=1 GeV
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
º QE scattering
CCQE c.s. from MiniBooNE
Katori@NuInt09
c.s considerably larger than the RFG prediction with MA=1 GeV
Possible issues:
Flux
Background substraction: 1¼, 2p2h, MEC
Inclusive (model independent) data are desirable
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
1¼ production
Reactions
Incoherent:
Coherent:
CC º l
NC º
º l A ! l ¼X
A ! l ¡ ¼+ A
A ! º ¼0 A
New data:
SciBooNE: ¾(NC¼0)/¾(CC)
MiniBooNE: NC¼0 normalized differential c.s. d¾/dp¼, d¾/dcosµ¼
CC¼+ ratio ¾(CC¼+)/¾(CCQE) arXiv:0904.3159
absolute c.s., d¾/dq2
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
1¼ production
Elementary processes (on nucleons)
Hernandez@NuInt09
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
1¼ production
Elementary process (on nucleons)
largest
Hernandez@NuInt09
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
1¼ production
N-¢ transition current
"Ã
¹¹
J¹ = Ã
C3V ¯¹
C4V ¯¹
C5V ¯¹
¯
¹
0
¯
0
¹
¯ p¹ )
(g =
q¡ q ° ) +
(
g
q
¢p
¡
q
p
)
+
(
g
q
¢p
¡
q
M
M2
M2
C3A ¯¹
C4A ¯¹
C6A ¯ ¹
¯
¹
0
¯
0
¹
A
¯¹
+
(g =
q¡ q ° ) +
( g q ¢p ¡ q p ) + C 5 g +
q q
M
M2
M2
M2
A
A
C6 = C5 2
à PCAC
2
m¼ ¡ q
1
A
C4A = ¡ C5A C3 = 0 Ã Adler model
4
µ
2
q
C5A = C5A (0) 1 ¡
3M A2 ¢
¶¡ 1µ
C5A(0), MA¢: fitted to ANL data on
L. Alvarez-Ruso, Universidade de Coimbra
2
q
1¡
M A2 ¢
¶¡
!
°5
#
u
2
º ¹ d ! ¹ ¡ ¼+ pp
NuFact 09
1¼ production
N-¢ transition current
C5A (0) , MA¢: fitted to ANL data on
M A ¢ = 0:985§ 0:082 GeV
C5A (0)
L. Alvarez-Ruso, Universidade de Coimbra
º ¹ d ! ¹ ¡ ¼+ pp
= 0:867 § 0:075 <
g¢ N ¼f ¼
p
¼ 1:2 Ã off diag. GT
relation
6M
NuFact 09
1¼ production
Elementary process
Sato & Lee model Nacamura@NuInt09
Dynamical model for ¼ production with °, e, º
Starting with an effective H: ¼N, ¢N )
T-matrix obtained from coupled channel Lippman-Schwinger eq.
Good agreement with data
Bare ¢N renormalized by meson clouds (30 %):
reconciles the empirical value with quark model results
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
1¼ production
Incoherent 1¼ production in nuclei
Large number of excited states ) semiclassical treatment
¼ propagation (scattering, charge exchange), absorption (FSI)
Most models cannot calculate this reaction channels.
Exceptions:
MC generators: NUANCE, NEUT, GENIE
Cascade: Ahmad, Athar, Singh, PRD 74 (2006)
Transport: GiBUU
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
1¼ production
GiBUU
Leitner@NuInt09
Boltzmann-Uehling-Uhlenberg transport model in coupled channels
One approach for eA, ºA, pA, ¼A reactions
Includes 61 baryons and 21 mesons (most relevant for us: ¢, N, ¼)
Elastic and inelastic scattering (NN, N¢, NN ! NN¼,…)
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
1¼ production
GiBUU Leitner@NuInt09
Effects of FSI on pion kinetic energy spectra
strong absorption in Δ region
side-feeding from dominant ¼+ into ¼0 channel
secondary pions through FSI of initial QE protons
º¹ +
56
F e ! ¹ ¡ ¼X E º = 1 GeV
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
1¼ production
GiBUU Leitner@NuInt09
Comparison to the ¾(CC¼+)/¾(CCQE) ratio at MiniBooNE
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
1¼ production
GiBUU Leitner@NuInt09
Comparison to the ¾(CC¼+)/¾(CCQE) ratio at MiniBooNE
Possible issues:
Insufficient non-resonant background for the elementary reaction
Problems in Eº reconstruction
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
1¼ production
Coherent pion production
CC º l A ! l ¡ ¼+ A
NC º A ! º ¼0 A
NEUT
Hiraide@NuInt09
Takes place at low q2
Very small cross section
but relatively larger than in
coherent ¼ production with
photons or electrons
At q2 » 0 the axial current
is not suppressed while the
vector is
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
1¼ production
Coherent pion production
Rein-Sehgal model NPB 223 (83) 29
In the q2=0 limit, PCAC is used to relate º induced coherent pion
production to ¼A elastic scattering
Continuation to q2 0: (1-q2/1 GeV2)-2 factor
Describes ¼A in terms of ¼N scattering
Subtracts the spurious initial ¼ distortion present in ¼A but not in
coherent pion production
Problems:
q2=0 limit neglects important angular dependence at low energies
“below 1 GeV and lighter nuclei (…) the nuclear form factor is not enough
forward peaked to render the finite t-dependence of the pion-nucleon
cross section negligible” Nieves@NuInt09
The ¼A elastic description is not realistic
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
1¼ production
Coherent pion production
Rein-Sehgal model NPB 223 (83) 29
In the q2=0 limit, PCAC is used to relate º induced coherent pion
production to ¼A elastic scattering
Continuation to q2 0: (1-q2/1 GeV2)-2 factor
Describes ¼A in terms of ¼N scattering
Subtracts the spurious initial pion distortion present in ¼A but not
in coherent pion production
Problems:
q2=0 limit neglects important angular dependence at low energies
“below 1 GeV and lighter nuclei (…) the nuclear form factor is not enough
forward peaked to render the finite t-dependence of the pion-nucleon
cross section negligible” Nieves@NuInt09
The ¼A elastic description is not realistic
L. Alvarez-Ruso, Universidade de Coimbra
Nieves@NuInt09
NuFact 09
1¼ production
Coherent pion production
Rein-Sehgal model NPB 223 (83) 29
RS model should not be used in the analysis of º experiments at
low energies
Ruled out by data:
Rein-Sehgal
w/ lepton mass correction
(Our default model)
SciBooNE 90% C.L.
Alvarez-Ruso et al.
Kartavtsev et al.
Hiraide@NuInt09
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
1¼ production
Coherent pion production
PCAC models Paschos,Berger@NuInt09
In the q2=0 limit, PCAC is used to relate º induced coherent pion
production to ¼A elastic scattering
Extrapolate to q2 0
Directly use ¼A cross section ) the spurious initial pion distortion
present in ¼A but not in coherent pion production is not substracted
Smaller c.s. than RS
L. Alvarez-Ruso, Universidade de Coimbra
Paschos@NuInt09
NuFact 09
1¼ production
Coherent pion production
Microscopic model Hernandez@NuInt09
¢ excitation is dominant
¢ properties change in the nuclear medium
Pion distortion: e¡
³
ip
~¼ ¢~
r
!
Á¤out (~
p¼; ~
r)
´
^opt Á¤out = 0
¡ r~ 2 ¡ p
~2¼ + 2! ¼V
^opt (r ) Ã
V
Optical potential in the ¢-hole model
Nonlocality for the pion momentum: p
~¼e¡
L. Alvarez-Ruso, Universidade de Coimbra
ip
~¼ ¢~
r
!
i r~ Á¤out (~
p¼; ~
r)
NuFact 09
1¼ production
Coherent pion production
Microscopic model Hernandez@NuInt09
Medium effects reduce considerably de cross section
Pion distortion shifts down the peak
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
1¼ production
Coherent pion production
Microscopic model Hernandez@NuInt09
£ A ¤2
l¾» C5 (0)
Comparison to MiniBooNE data
Anderson@NuInt09
Data seem to prefer C5A (0) » 1:2
in agreement with the GT relation,
but the subtraction of a large
incoherent ¼0 background is
performed
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
1¼ production
Coherent pion production
Microscopic model Hernandez@NuInt09
Caveats:
The validity of the model is restricted to the kinematic region where
the ¢(1232) is dominant
Nonlocalities in the ¢ propagation can be important Nakamura@NuInt09
PWIA calculation with bound state spinors in a mean field vs. free
nucleons in a Local Fermi Gas Leitner et al., PRC 79 (2009)
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Conclusions
Excellent time for theoretical ºA studies
New inclusive and exclusive data
(K2K, MiniBooNE, SciBooNE, MINOS, NOMAD)
MINERvA in the future
A good understanding of (semi)inclusive ºA (together with eA) cross
section in the QE and resonance regions is required for the (model
dependent) separation of mechanisms: only then more precise
determinations of Eº and NC¼0 background will be possible
The physical meaning of ϰ, MA needs to be clarified
The role of FSI in ¼ production in nuclei should be established
Understand the validity of the approximations used in coherent pion
production calculations
Theoretical progress has to be incorporated in the MC
New measurements of the º c.s. on the nucleon would help…
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09
Conclusions
Thanks to all NuInt09 participants
L. Alvarez-Ruso, Universidade de Coimbra
NuFact 09