Electrons on a triangular lattice in Na-doped Cobalt Oxide Yayu Wang, Maw Lin Foo, Lu Li, Nyrissa Rogado, S.
Download ReportTranscript Electrons on a triangular lattice in Na-doped Cobalt Oxide Yayu Wang, Maw Lin Foo, Lu Li, Nyrissa Rogado, S.
Electrons on a triangular lattice in Na-doped Cobalt Oxide Yayu Wang, Maw Lin Foo, Lu Li, Nyrissa Rogado, S. Watauchi, R. J. Cava, N.P.O. Princeton University 1. 2. 3. 4. 5. Frustration on triangular lattice Large thermopower in NaxCoO2 ARPES Hall effect Phase diagram Supported by NSF, ONR Geometrical Frustration on triangular lattice H = -J Si Sj (i,j) Antiferromagnetic Ising model ? Impossible to have AF alignment on all 3 bonds Ground state is disordered and highly degenerate Resonating valence bond model(s) 1971, 1987 Spin Ice in pyrochlores 1998 Frustrated magnetic states in spinels 1999 Nax CoO2 building block tilt Terasaki, Uchinokura 1997 Octahedra tilted to form a layer Co Na Na ions (dopants) sandwiched btw layers of tilted CoO2 octahedra Co ions define a triangular lattice as grown Co Na Resistivity of NaxCoO2 (x ~ 0.71) Terasaki et al., PRB 1997 Wang et al. Nature ‘03 Susceptibility of insulators vs metals c Curie ~ 1/ T Susceptibility c = dM/dH In metals, c small and indept of T c 0 kT Pauli DOS T energy AF spins 1/c In Antiferromagnets c= C/(T + q) free spins q = TN (Neel temp) 0 T Susceptibility c has Curie-Weiss form 0.20 1/c (T.m ole/em u) q ~ 55K 0.15 • AF Neel temperature TN ~ 60-100 K • Magnitude of c implies Co4+ ions spin S = ½ Co3+ is diamagnetic (S = 0), H || c 0.10 Co3+ H || ab 0.05 0.00 -50 0 50 100 T (K) 150 200 Co4+ Metallic resistivity but antiferromagnetic in spin response (Curie-Weiss Metal) 0.20 1/c (T.m ole/em u) q ~ 55K 0.15 H || c 0.10 H || ab 0.05 0.00 -50 0 50 100 T (K) 150 200 Thermopower and Peltier coef. holes J E JQ Heat current density JQ accompanies charge current density J Ratio of currents JQ/J = P (Peltier coeff) S = P / T = JQ/ JT Large thermopower S of NaxCoO2 Terasaki et al Phys. Rev. B (1997) 100 Na 1.36 Co 2 O 4 x = 0.71 80 Q ( m V/K) • Large thermopower ~10 times Sommerfeld 60 value at 300 K 40 20 Sommerfeld 0 0 50 100 150 200 250 300 T (K) Thermopower Classical gas J = nev JQ = n kBT v kBT e Peltier coef. P = JQ/J = kBT/e Seebeck coef. S = P / T = kB/e Semiconductor Natural unit of S kB/e = 86 mV/K JQ = n v D S = (kB/e)(D/kBT) m D Thermopower of conventional metals “Excitation picture” hole particle e(k) Fermi level m Fermi Gas in E field Charge currents add mass currents cancel Heat currents cancel E vacancies hole excitations S = JQ/JT strongly suppressed dk = c-k S ~ (kB/e) (T/TF) TF ~ 50,000 K ~ 86 x 10-2 mV/K particle excitations E S virtually indepndnt of H Field dependence of S in NaxCoO2 Wang et al. Nature ‘03 1.4 H || - Ñ T 1.2 1.0 B Q ( m V/K) 10K - T 0.8 0.6 8 0.4 7 3.3 6 • In-plane field 0.2 2.5K 5.3 H || - T 0.0 -0.2 • Strong field suppression of Thermopower 4.4 0 2 4 6 8 10 m 0 H (T) 12 14 V Spin contribution to thermopower (Chaikin Beni, 1976) JQ J J = nev Spin entropy per carrier = kBlog 2 JQ = nv kBT log 2 S = JQ/JT = (kB/e) log 2 ~ 60 mV/K Not signif. in conv. metals S(H,T) curve is a function of H/T only 100 Na 1.36 Co 2 O 4 Q (m V/K) 80 60 40 20 0 0 50 100 150 200 250 300 T (K) Conclusion: 1. Spin entropy is the source for enhanced thermopower 2. Key for new thermo-electric materials -- Spin Wang et al. Nature ‘03 In NaxCoO2, hole density nh = 1-x Co 3d states NaxCoO2 Multiple electronic phases vs. Na content Superconductivity Water intercalated superconductor Takada et al., Nature (2003). • pairing symmetry: s, p or d-wave? • Why is water essential? • What is pairing mechanism: e-ph or e-e or magnetic? NaxCoO2·y H2O, x ~ 0.35, y ~ 1.30 Superconductor with Tc ~ 4.5K T-linear Hall coefficient Yayu Wang, 03 RH conv. metal Why is RH T-linear? Hopping Hall current in triangular lattice (Holstein, ‘61) sH ~ t12 t23 t 31 ~ i 2 t3 exp(ia) t12 Peierls phase a = 2p f/f0 f 1 t13 High-frequency RH* in tJ model (B.S. Shastry ‘93, ‘03) sH ~ i(bt)3 exp(ia) bt << 1 (b = 1/T) s ~ (bt)2 R*H ~ sH/Hs2 ~ (bt) -1 T-linear M2S-RIO conf. Rio de Janeiro, May 28th 2003 (N.P. Ong) 3 ARPES: Weak quasiparticle dispersion Single-particle hopping : Z. Hasan et al. (PRL ‘04) Small bandwidth Low degeneracy T t < 0 and |t| ~ 10 meV (bandwidth < 100 meV) Kinetic energy (eV) Fermi Surface of Na0.71CoO2 measured by ARPES Hasan et al. Large hole-like FS Hopping integral t ~ 10 meV Fermi velocity < 0.4 eV.A Behavior of quasi-particles versus temperature Integrated Intensity(arb. Units) 7 6 5 4 3 2 Resistivity is T-linear below 100K 0 40 80 120 ARPES Quasiparticles are coherent only below 150K NaxCoO2 Insulating state as grown Multiple electronic phases vs. Na content Foo et al. PRL ‘04 Fine-tuning of Na content in NaxCoO2 single crystals Foo et al., condmat/0312174 (2003), PRL ‘04 • Reduce the Na content by a series of chemical de-intercalation • x = 0.75, as grown crystals of Floating zone or flux method x = 0.68: NaClO3 in water x = 0.50: I2 in Acetonitrile Stronger oxidation agent x = 0.31: Br2 in Acetonitrile High-quality crystals with Na content 0.31 < x < 0.75 Calibration of the Na content vs. c-axis lattice parameter Calibration procedure 11.3 c-axis (angstroms) NaxCoO2 11.2 • treat powder and crystals under same conditions 11.1 • powder x-ray diffraction to get c-axis lattice constant • ICP-AES to determine the Na contents of powders 11.0 10.9 • x vs. c-axis calibration curve powder crystal 10.8 0.3 0.4 0.5 0.6 Na content 0.7 • from the c-axis of crystal, extract the Na content 0.8 1.6 NaxCoO2 -3 c (10 emu/mole.Oe) 1.4 0.75 1.2 1.0 0.68 0.8 0.6 0.31 0.4 0.50 0.2 0.0 88K 53K 0 50 100 150 200 250 300 T (K) • • x = 0.50 (1/2): Two kinks at Tc1=88K and Tc2=53K in c Resistivity shows insulating behavior below T=53K An unexpected insulator at x = ½ 0.5 25 2.0 NaxCoO2 NaxCoO2 x=0.50 20 88K 1.5 53K 1.0 (m.cm) (m.cm) 53K 0.50 88K d/dT 0.0 15 10 -0.5 0.5 0.31 0.71 0.0 0 50 100 150 T (K) 200 250 5 300 0 0 -1.0 20 40 60 80 100 120 140 160 T (K) b a b* a* Na Na vacancy Electron diffraction at 300K shows the superlattice formed by the Na ions, consistent with a zig-zag order Zendbergen et al., condmat/0403206 (2004) Thermal Conductivity Hall coefficient Foo et al., PRL ‘04 0 NaxCoO2 as grown Multiple electronic phases vs. Na content Spin ordered Foo et al. PRL ‘04 Further enhancement of thermopower x = 0.71 x= Thermopower of 0.88 NaxCoO2 250 S S (mV/K) 200 Na0.88CoO2 150 Na0.71CoO2 100 50 Sommerfeld 0 0 50 100 150 200 T (K) 250 300 350 P = S2 s 250 2 Power Factor S s ( mW/cm . K ) Power factor of NaxCoO2 200 Na0.88CoO2 x ~ 0.85 2 150 100 50 x = 0.71 Na0.71CoO2 0 0 50 100 150 200 T (K) 250 300 350 Unusual electronic behavior in NaxCoO2 Strongly correlated s = ½ holes hopping on triangular lattice • Paramagnetic Metal (x ~ 1/3) High conductivity, superconducting with H2O intercalatn. • Charge-ordered Insulator (x = ½) Na ion ordering, hole ordering (stripes?), giant thermal conductivity • Curie-Weiss metal (x ~ 2/3) Curie-Weiss susceptibility, metallic cond., large thermopower from spin entropy, T-linear Hall coef. • Spin Ordered Phase (x > ¾) Even larger thermopower, field-induced metamagnetism 1.6 1.4 0.6 0.75 1.2 1.0 0.2 0.8 0.6 0.31 0.0 -0.2 0.4 -0.4 0.2 -0.6 0.0 x=0.31 T=5K 0.4 M (a.u.) -3 c (10 emu/mole.Oe) 0.8 NaxCoO2 -0.8 0 50 100 150 T (K) • • • 200 250 300 -5 -4 -3 -2 -1 0 1 2 3 4 5 m0H (T) x = 0.31 (~ 1/3), parent compound of the SC c is T-independent, not Curie-Weiss M-H curves are linear at low T, no ferromagnetic order Magnetic properties rather normal 3 100 NaxCoO2 NaxCoO2 0.71 2 RH (10 m /C) 3 60 1 -9 S (mV/K) 80 40 0.31 0.31 0 20 0.71 -1 0 0 50 100 150 T (K) • • • • x = 0.31 (~ 1/3): 200 250 300 0 50 100 150 200 250 300 350 T (K) Smaller high temperature thermopower Smaller Hall coefficient, weaker T-dependent larger hole concentration (~3x1022/cm3) and reduced correlation Consistent with ARPES (MZ Hasan et al., and Hong Ding et al.) x = 0.71 (~ 2/3) • c Curie-Weiss, AF interaction • is T-linear at low T • S large, ~90 mV/K at 300K • RH strong T-linear Curie-Weiss metal Strong magnetic interaction and electron correlation x = 0.31 (~ 1/3) • c is T-independent, non Curie-Weiss • smaller, T 2 at low T • S small, ~34 mV/K at 300K • RH weaker T-dependence Paramagnetic (T 2) metal More like conventional metal Sodium ion ordering versus x Lynn, Cava et al. 0 120 -100 100 -200 80 0.71 S (mV/K) S (mV/K) 100 -300 60 40 -400 0.31 NaxCoO2 x=0.50 -500 -600 0.50 0 50 100 150 200 250 300 20 0 0 100 200 300 T (K) T (K) S have giant negative values below Tc1 The number of holes are strongly reduced, the residual charge carriers seem to be electron like 400 0 8 NaxCoO2 6 RH (10 m /C) 3 -400 0.50 4 -9 -9 3 RH(10 m /C) -200 -600 -1000 0.31 NaxCoO2 x=0.50 -800 2 0 0.71 -2 0 50 100 150 T (K) 200 250 300 0 50 100 150 200 250 300 350 T (K) RH becomes negative and the amplitude is 100 times larger • charge density reduces by ~ 100 times • particle-hole symmetry at low T Possible charge ordering in NaxCoO2 electron electron hole electron hole hole x = 1/3 x = 2/3 3 a 3 a 3 a 3 a electron x = 1/2 hole 1/4 < x < 1/3 dome shape SC < x < 1/4 Schaak et al., Nature0(2003) 3/4 < x < 1 CoO2: No results, NaCoO2: X = 1/2 Magnetic xordering? ~ 2/3 per Co site, 1 electron perDoped Co site, 1 pair of electron Mott Insulator? insulator x ~ 1/3Charge ordered Motohashi etinsulator. al.,magnetic PRB (2003)interaction Strong Mott insulator? band Sugiyama et electron al., condmatcorrelation (2003) More like conventional metal and Maw-lin Foo et al., condmat (2003) Bayrakci et al., condmat (2003) To appear in PRL (2004) 4 1.0 Na 1.36 Co 2 O 4 3 3 R H (10 cm /C) 0.6 2 -3 (m cm) 0.8 0.4 0 0.2 0.0 1 -1 0 100 200 300 T (K) • Good conductor • is T-linear below 100 K 0 100 200 300 T (K) Hall coefficient n2D ~ 4× 1022 /cm2 400 1.0 NaxCoO2 0.71 60 0.8 NaxCoO2 0.6 40 0.31 0.4 (m.cm) (m.cm) 50 30 20 30K 0.2 0.0 10 0 0 50 0 500 1000 1500 2000 2500 100 150 200 250 300 2 2 T (K) T (K) • • • x = 0.31 (~ 1/3), parent compound of the SC Better metal, is smaller that x = 0.71 R ~ T2 below 30K, ~ 10 mcm at 4K More like a conventional Fermi liquid Thermoelectric and Peltier effects holes J J JQ Heat current density JQ accompanies charge current density J Ratio of currents JQ/J = P (Peltier coeff) S = P / T = JQ/ JT specimen JQ p n Thermoelectric cooler Systematic change vs x except at x = ½ Susceptibility Resistivity Foo et al., PRL ‘04 • Na • CoO2 Co Na CoO2 Transition metal oxide tunable carrier density Quasi-2D: ρc/ρab~200 at 4K • Triangular Co lattice with AF interaction—Frustrated magnetic system • Enhanced thermopower Co I. Terasaki et al (1997) Na • Superconductivity K. Takada et al (2003) Strong-Correlation System: Kubo formula: S ( 2 ) / S (1 ) m / e Q= , T , m s = E , V T N s spin : Spin Entropy g s : Spin Degeneracy Free Spin model: Qspin gmH gmH kB gmH gmH k BT k BT = e ) t anh( ) ln(e e k BT k BT P.M.Chaikin et al (1976) x=g m B B/k B T 0 1 2 3 4 0.6 Q ( m V/K) T=2.5K, H||- Ñ T raw data 0.4 fit • Close fit using free-spin model 0.2 0.0 • From fit: Landé factor g ~ 2.2 0 2 4 6 8 m 0 H (T) 10 12 14 2.0 Th phosphor -bronze - T Tc LSCO-0.17 1.5 T0 V Q ( m V/K) 1.0 10 0.5 7.5 0.0 • Stotal = S0 - Swire • Phosphor bronze wire is H-independent • All obs. field dependence from NaxCo2O4 5K -0.5 -1.0 0 5 10 15 20 m 0 H (T) 25 30 Materials Constraint semiconductor metal S ~ D/T S ~ T/TF 1000 mV/K T T Difficult to have ZT larger than 0.01 below 200 K. 5 mV/K 350 30 0.50 300 25 250 20 (W/mK) (W/mK) 0.31 15 0.71 10 5 0 200 150 100 0 50 100 150 200 250 T (K) Thermal conductivity: mostly from phonons 300 50 0 0.71 0 0.31 50 100 150 200 T (K) Much larger thermal conductivity: longer phonon mean free path • Na ion ordering: reduced scattering by disordered Na ions in the Na layer • charge ordering: steep increase below 88K, reduced electron-phonon scattering in the CoO2 plane, NaxCoO2 Several electronic phases vs. Na content Foo et al. PRL (’04) Low-energy electronic structure of Na0.7CoO2 ARPES work by Hasan Group : cond-mat/0308438 Results on Na0.7CoO2 : O Weak quasiparticle dispersion : narrow bandwidth O Signatures of Strong Correlation (Large Hubbard U) O Fermisurface : Large rounded Hole-like, small vf (anisotropic) O Thermal behavior of QPs: coherent QP only below 150K Strong Correlation (Large Hubbard U) Single-particle hopping : 7 U ~ 5 eV 70 t < 0 and |t| ~ 10 meV (bandwidth < 100 meV) Renormalization by a factor of 10 69 o Large hole-like Fermisurface 68 67 10 66 65 64 63 62 61 60 8 area(arb. Units) Normalized Intensity(arb. Units) Momentum o Temperature behavior of quasiparticles BL 12 new results h= o Fermi Surface of Na0.7CoO2 Integrated Intensity(arb. Units) Weak quasiparticle dispersion o Weak hexagonal anisotropy 6 4 o Fermi velocity < 0.4 eV.A 2 6 5 4 3 2 59 0 40 80 120 0 57 55 52 50 55 60 65 70 Photon Energy(eV) Resistivity is T-linear up to 100K 50 integrated intensity of 11eV peak v.s. photon energy 15 14 13 12 11 10 9 Binding Energy(eV) Kinetic energy (eV) Narrow band Resonance profile of valence satellite a measure of Hubbard U ~ 5 eV n(k) : integration –100 meV to +25 meV ARPES Quasiparticles are coherent only below 150K Strong Correlation (Large Hubbard U) BL 12 new results U ~ 5 eV h= 70 69 68 67 10 66 63 62 61 60 59 8 area(arb. Units) Normalized Intensity(arb. Units) 65 64 6 4 2 0 57 55 52 50 55 60 65 70 Photon Energy(eV) 50 integrated intensity of 11eV peak v.s. photon energy 15 14 13 12 11 10 9 Binding Energy(eV) Narrow band Resonance profile of valence satellite a measure of Hubbard U ~ 5 eV NaxCoO2: Curie-Weiss Metal (Curie Weiss) resistivity c Pauli TT In NaxCoO2 (x = 0.70), susceptibility implies spin-1/2 local moments, instead of degenerate electron gas 0 0 40 40 -1 30 -2 10 25 H || ab -3 15 20 -4 30 ( H - 0)/ 0 (%) ( H - 0)/ 0 (% ) 35 -1 4.3K 20 -2 H || c 6 -3 -5 4.3 Na 1.36 Co 2 O 4 0 2 4 6 10 8 m 0 H (T) 10 12 14 -4 0 2 4 6 8 10 m 0 H (T) Magneto-resistance also from Spin effect, similar anisotropy between in-plane and c-axis. 12 14 ONR workshop 2004, Tampa Two figures of merit for thermoelectrics Max temp. difference S = thermopower = resistivity = thermal conductivity DTmax = ½ ZT2 1. Power factor S2/ 2. The ZT number ZT = (S2/)(T/) ZT ~ 1 in Bi2Te3 (at 300 K) Maximize ZT and minimize resistivity (physically conflicting demands) 0.060 Na0.88CoO2 ZT 0.040 0.020 Na0.71CoO2 0.000 0 50 100 150 T (K) 200 250 300