Vulnerability and Adaptation Assessments Hands-On Training Workshop Impact, Vulnerability and Adaptation Assessment for the Agriculture Sector – Part 1 Asunción Paraguay.
Download ReportTranscript Vulnerability and Adaptation Assessments Hands-On Training Workshop Impact, Vulnerability and Adaptation Assessment for the Agriculture Sector – Part 1 Asunción Paraguay.
Vulnerability and Adaptation Assessments Hands-On Training Workshop Impact, Vulnerability and Adaptation Assessment for the Agriculture Sector – Part 1 Asunción Paraguay. August 14-18, 2006 Graciela O. Magrin INTA-Instituto de Clima y Agua (Argentina) Outline 1- Climate change, agriculture and food security 2- Climatic variability Climatic trends Climate Change 3- Methods and tools Datasets Practical applications Concepts Climate Other stresses Economic Variability Change Social Demographic Changes in Land use Vulnerability Vulnerability Where How Much Adaptive Capacity Vulnerability Where How Much Adaptive Capacity Land degradation Desertification Vulnerability Where How Much Adaptive Capacity Had CM2 model, 2050s Temperature Precipitation Vulnerability Where Adaptive Capacity How Much Anual OC-SE Estandarizado 176 Est -15 Internal -20 -25 Barros, 2004 -30 -35 -40 -70 -65 -60 -55 -50 -45 -40 Planned Figure: Percentage of total county area devoted to wheat (Wh), maize (Mz), sunflower (Su) and soybean (Sb), during 20’ to 90’ decades in the last century. 100 90 80 70 60 50 40 30 20 10 0 Pilar Wh Su Mz Sb 20' 30' 40' 50' 60' 70' 80' 90' 100 90 80 70 60 50 40 30 20 10 0 100 90 80 70 60 50 40 30 20 10 0 Rosario 100 90 80 70 60 50 40 30 20 10 0 20' 30' 40' 50' 60' 70' 80' 90' 20' 30' 40' 50' 60' 70' 80' 90' 100 90 80 70 60 50 40 30 20 10 0 Santa Rosa 20' 30' 40' 50' 60' 70' 80' 90' 100 90 80 70 60 50 40 30 20 10 0 9 de Julio 20' 30' 40' 50' 60' 70' 80' 90' Tres Arroyos Argentina Pampas Region 20' 30' 40' 50' 60' 70' 80' 90' Junín 20' 30' 40' 50' 60' 70' 80' 90' 100 90 80 70 60 50 40 30 20 10 0 100 90 80 70 60 50 40 30 20 10 0 Internal Adaptation Magrin et al., 2005 20' 30' 40' 50' 60' 70' 80' 90' 100 90 80 70 60 50 40 30 20 10 0 Laboulaye Pergamino Azul 20' 30' 40' 50' 60' 70' 80' 90' Vulnerability Where Adaptive Capacity How Much Internal Policy makers Civil stakeholders Scientists Planned Vulnerability Where Adaptive Capacity How Much Internal Planned Lobell and Monasterio, 2006 The example shows the impact of different irrigation scheduling in wheat in the Yaqui Valley of Mexico. Average wheat yield loss relative to the five irrigation regime for each of the other six regimes, are plotted as a function of initial available water for available water holding capacity of 15% (Lobell & Monasterio, 2006). Limits to Adaptation Technological limits (e.g., crop tolerance to waterlogging or high temperature; water reutilization) Social limits (e.g., acceptance of biotechnology) Political limits (e.g., rural population stabilization may not be optimal land use planning) Cultural limits (e.g., acceptance of water price and tariffs) Climate IMPACTS CO2 Temperature Precipitation POSSIBLE BENEFITS CO2 CARBON DIOXIDE FERTILIZATION LONGER GROWING SEASONS INCREASED PRECIPITATION POSSIBLE DRAWBACKS MORE FREQUENT DROUGHTS PESTS HEAT STRESS FASTER GROWING PERIODS INCREASED FLOODING AND SALINIZATION Changes in biophysical conditions Changes in socioeconomic conditions in response to changes in crop productivity (farmers’ income; markets and prices; poverty; malnutrition and risk of hunger; migration) Agriculture and Climatic Variability Droughts affecting the agricultural sector of LA since 2003 Year Country Site Sector Losses Production million US$ 2004 Ecuador Crops 70% 2004 Guatemala Crops 80% 4 2004/05 Brazil RG do Sul Soybean and others 8 Mt 2200 2004/05 Argentina NOA-NEA Soybean 2 Mt 340 2005 Argentina centre-north and western Pampas Main Crops 10 Mt 900 2005 Paraguay 55% 170 2005 Bolivia Santa Cruz Hail and floodings 1 2005 Peru Piura frost 11 Soybean Floods affecting the agricultural sector of LA since 2003 Flood Argentina 2003 Flood Bolivia 2006 Soybean monoculture Year Country Site Sector Soybean Maize & Sorghum Losses Production million US$ 0.4 Mt 0.2 Mt 68 16 0.3 Mha 200 2003 Argentina Santa Fe 2004 Argentina Chaco 2006 Bolivia Potosí, Oruro, La Paz Crops 70% 15 2006 Guyana Mahaica, Mahaicony Cash crops Rice export 100% 4 Flooding affecting the agricultural sector of LA since 2003 Other extreme events affecting the agricultural sector of LA since 2003 Year 2004 2005 Event Hurricane Catarina Hurricane Stan Country Site Brazil Bannana Rice Guatemala Basic grains Horticulture Coffee Catlle Mexico Chiapas El Salvador 2006 Hail storm Sector Argentina Santa Fe Coffee Losses Production millionUS$ 85% 40% 160 16 30 134 0.23 Mha Productive lands 9.1% Soybean & Maize 0.016 Mha 120 5 Impacts of interanual climatic variability related to ENSO Impacts of interanual climatic variability related to ENSO Soybean yield, Argentina Probability of having high/low yields during El Nino/La Nina years 0 - 35 35 - 45 45 - 55 55 - 65 65 - 75 75 - 85 85 - 100 SD 0 - 35 35 - 45 45 - 55 55 - 65 65 - 75 75 - 85 85 - 100 SD El Niño La Niña Impacts of interanual climatic variability related to ENSO Maize production Uruguay Baethgen et al., 1998 Optimizing crop management 100 90 80 Fertilizer amount Planting dates Yield 70 Low Med. High 60 50 Frequency (%) 40 30 20 10 0 Adaptation: All Years El Niño "Neutral" La Niña Adaptation: Argentina. Crop mix Pergamino Pilar Santa Rosa Mod. Risk aversion 100% 75% 50% 25% 0% Niña Neutro Niño Clim Niña Neutro Niño Clim Niña Neutro Niño Clim ENSO Phases Maize Soybean Wheat – Soybean Wheat Sunflower Peanut Agriculture and Climatic Trends Trends in total and extreme rainfall 1960-2000 Haylock et al., 2006 Total precipitation Annual days RR>20mm Sign of the linear trend in rainfall indices as measured by Kendall’s Tau. An increase is shown by a plus symbol, a decrease by a circle. Bold values indicate significant at p 0.05. Trends in temperature 1960-2000 Indice based on daily minimum temperature: cold and warm nights (Vincent et al, 2005) Impacts of climatic trends in SESA Changes in crop and pastures production (Argentina-Uruguay) between 1930-1960 and 1970-2000 due to climate change (Magrin et al, 2005; Baethgen et al, 2006) Pastures Crops 8 1930 1960 1970 2000 Climate Wheat +56 +13 (-6 to +21) Sunflower +102 +12 (+4 to +24) Maize +110 +18 (+6 to +31) Soybean - +38 (+4 to +81) 7 + 3.6% + 6.4% Materia seca (t/ha) Total 6 + 9.8% 5 + 7.0% 4 3 Azul Pergamino Tres Arroyos Uruguay Impacts of climatic trends in SESA Fusarium incidence in La Estanzuela Uruguay Fusarium incidence Mauricio Fernandes AIACC-LA27 1931-1965 1966-1999 Agriculture and Climate Change How Might Global Climate Change Affect Crop Production? Maize MAIZE MAIZE -28 -28 -29 -29 -29 -29 -30 -30 -30 -30 -30 -30 -30 -30 -31 -31 -31 -31 -31 -31 -31 -31 -32 -32 -32 -32 -32 -32 -32 -32 -33 -33 -33 -33 -33 -33 -33 -33 -34 -34 -34 -34 -36 -36 -37 -37 -37 -37 -37 -37 -37 -37 -38 -38 -38 -38 -38 -38 -38 -38 -39 -39 -39 -39 -39 -39 -39 -39 -40 -40 -40 -40 -40 -40 -40 -40 -41 -41 -41 -41 -41 -41 -66 -66 -64 -64 -62 -62 Longitud Longitud -60 -60 -58 -58 -28 -28 -66 -66 -64 -64 -29 -29 -62 -62 Longitud Longitud -60 -60 -28 -28 -58 -58 -41 -41 -66 -66 -64 -64 -29 -29 -62 -62 Longitud Longitud -60 -60 -28 -28 -58 -58 -30 -30 -30 -30 -31 -31 -31 -31 -31 -31 -31 -31 -32 -32 -32 -32 -32 -32 -32 -32 -33 -33 -33 -33 -33 -33 -33 -33 -34 -34 -34 -34 -34 -34 -35 -35 -22% -35 -35 Latitud Latitud -8% -35 -35 Latitud Latitud -30 -30 -34 -34 -36 -36 -37 -37 -37 -37 -37 -37 -37 -37 -38 -38 -38 -38 -38 -38 -38 -38 -39 -39 -39 -39 -39 -39 -39 -39 -40 -40 -40 -40 -40 -40 -40 -40 -41 -41 -41 -41 -41 -41 -66 -66 -64 -64 -29 -29 -62 -62 Longitud Longitud -60 -60 -58 -58 -28 -28 -66 -66 -64 -64 -29 -29 -62 -62 Longitud Longitud -60 -60 -58 -58 -28 -28 -36 -36 -64 -64 -29 -29 -62 -62 Longitud Longitud -60 -60 -58 -58 -28 -28 -30 -30 -31 -31 -31 -31 -31 -31 -31 -31 -32 -32 -32 -32 -32 -32 -32 -32 -33 -33 -33 -33 -34 -34 -34 -34 -35 -35 +18% -35 -35 -34 -34 -35 -35 -36 -36 -36 -36 -36 -36 -36 -36 -37 -37 -37 -37 -37 -37 -37 -37 -38 -38 -38 -38 -38 -38 -38 -38 -39 -39 -39 -39 -39 -39 -39 -39 -40 -40 -40 -40 -40 -40 -40 -40 -41 -41 -41 -41 -41 -41 -28 -28 -29 -29 -66 -66 -64 -64 -62 -62 Longitud Longitud -60 -60 -58 -58 -28 -28 -29 -29 -66 -66 -64 -64 -62 -62 Longitud Longitud -60 -60 -58 -58 -28 -28 -29 -29 -64 -64 -62 -62 Longitud Longitud -60 -60 -58 -58 -28 -28 -29 -29 -30 -30 -30 -30 -30 -30 -31 -31 -31 -31 -32 -32 -32 -32 -33 -33 -33 -33 -33 -33 -33 -33 -34 -34 -34 -34 -35 -35 -36 -36 +2% -35 -35 -35 -35 +21% Latitud Latitud -31 -31 -32 -32 Latitud Latitud -31 -31 -32 -32 -34 -34 -58 -58 -64 -64 -62 -62 Longitud Longitud -60 -60 -58 -58 -60 -60 -58 -58 -41 -41 -66 -66 -30 -30 MPI-ds MPI-ds MPI-ds -60 -60 -3% -33 -33 Latitud Latitud -35 -35 Latitud Latitud -30 -30 -8% -66 -66 -29 -29 -30 -30 -34 -34 -62 -62 Longitud Longitud -41 -41 -66 -66 -30 -30 -33 -33 -64 -64 -8% -35 -35 -36 -36 -28 -28 -66 -66 -29 -29 -30 -30 Latitud Latitud Latitud Latitud -35 -35 -36 -36 Uncertainty? -3% -34 -34 -36 -36 -36 -36 Latitud Latitud +3% -35 -35 -36 -36 UKMO UKMO Latitud Latitud -35 -35 Latitud Latitud -35 -35 Latitud Latitud -16% -34 -34 Latitud Latitud -28 -28 -29 -29 Latitud Latitud Latitud Latitud -28 -28 -29 -29 GISS GISS GISS Wheat WHEAT WHEAT -29 -29 -28 -28 UKMO Soybean SOYBEAN SOYBEAN -28 -28 Latitud Latitud GFDL GFDL GFDL Sunflower SUNFLOWER SUNFLOWER -34 -34 -35 -35 -36 -36 -36 -36 -37 -37 -37 -37 -37 -37 -36 -36 -37 -37 -38 -38 -38 -38 -38 -38 -38 -38 -39 -39 -39 -39 -39 -39 -39 -39 -40 -40 -40 -40 -40 -40 -40 -40 -41 -41 -41 -41 -41 -41 -41 -41 -66 -66 -64 -64 -62 -62 Longitud Longitud +7% Magrin & Travasso 2002 How Might Global Climate Change Affect small farmers Food Production? Jones & Thornton, 2003 Overall reduction: 10% Simulated maize yields (baseline) and changes to 2055 for Latin America. How Might Global Climate Change Affect small farmers Food Production? Jones & Thornton, 2003 Eastern Brazil: an area with moderate predicted maize yield changes in 2055, of a size that could readily be handled through agronomy and/or breeding. How Might Global Climate Change Affect small farmers Food Production? Jones & Thornton, 2003 Venezuela: a case where maize yields to 2055 are predicted to be almost eliminated, indicating that maize production may have to be shifted into wetter areas (for example, to the south-west). How Might Global Climate Change Affect Food Production? Potential changes (%) in national cereal yields for the 2020s, 2050s and 2080s (compared with 1990) under the HadCM3 SRES A2a and B2 scenarios with and without CO2 effects. Parry et al., 2004 Developed-Developing Country Differences Potential change (%) in national cereal yields for the 2080s (compared with 1990) using the HadCM3 GCM and SRES scenarios (Parry et al., 2004) Scenario A1FI A2a A2b A2c A2c B1a B2b C02 (ppm) 810 709 709 709 527 561 561 World (%) -5 0 0 -1 -3 -2 -2 Developed (%) 3 8 6 7 3 6 5 Developing (%) -7 -2 -2 -3 -4 -3 -5 DevelopedDeveloping) (%) 10 10 8 10 7 9 9 Additional Millions of People Additional People at Risk of Hunger 80 69 70 60 60 50 50 40 43 30 34 30 20 9 10 7 5 0 2020 2050 2080 Unstabilised Stabilised at 750ppmv Stabilised at 550ppmv Parry et al., 2004 Conclusions Although global production appears stable . . . . . . regional differences in crop production are likely to grow stronger through time, leading to a significant polarization of effects . . . . . . with substantial increases in prices and risk of hunger amongst the poorer nations Most serious effects are at the margins (vulnerable regions and groups) Methods, Tools, and Datasets 1. The framework 2. The choice of the research methods and tools Frameworks Adaptation Policy Framework (APF), US Country Studies, IPCC, seven steps All have the essential common elements Problem definition Selection and testing of methods Application of scenarios (climate and socioeconomic) Evaluation of vulnerability and adaptation The studies may want to use a framework as guidance or draw from the best elements of all of them Quantitative Methods and Tools Experimental Analogues (spatial and temporal) Production functions (statistically derived) Agroclimatic indices Crop simulation models (generic and crop-specific) Economic models (farm, national, and regional) – Provide results that are relevant to policy Social analysis tools (surveys and interviews) – Allow the direct input of stakeholders (demanddriven science), provide expert judgment Integrators: GIS Experimental: Effect of Increased C02 Near Phoenix, Arizona, scientists measure the growth of wheat surrounded by elevated levels of atmospheric CO2. The study, called Free Air Carbon Dioxide Enrichment (FACE), is to measure CO2 effects on plants. It is the largest experiment of this type ever undertaken. http://www.ars.usda.gov http://www.whitehouse.gov/media/gif/Figure4.gif Experimental Value Spatial scale of results Site Time to conduct analysis Season to decades Data needs 4 to 5 Skill or training required 1 Technological resources 4 to 5 Financial resources 4 to 5 Range for ranking is 1 (least amount) to 5 (most demanding). Example: growth chambers, experimental fields. Analogues: Drought, Floods Uruguay January 1998 Uruguay Vegetation Index Vegetation Source: INIA-IFDC January 2000 Analogues (space and time) Value Spatial scale of results Site to region Time to conduct analysis Decades Data needs 1 to 2 Skill or training required 1 to 3 Technological resources 1 to 3 Financial resources 1 to 2 Range for ranking is 1 (least amount) to 5 (most demanding). Example: existing climate in another area or in previous time Production Functions Precipitation Relationship between wheat yields and precipitation during the period from 60 days before to 10 days after flowering in two sites in Argentina. (Calviño & Sadras, 2002) Production Functions Value Spatial scale of results Site to globe Time to conduct analysis Season to decades Data needs 2 to 4 Skill or training required 3 to 5 Technological resources 3 to 5 Financial resources 2 to 4 Range for ranking is 1 (least amount) to 5 (most demanding). Example: Derived with empirical data. Agroclimatic Indices Length of the growing periods (reference climate, 1961-1990). IIASA-FAO, AEZ Agroclimatic Indices Value Spatial scale of results Site to globe Time to conduct analysis Season to decades Data needs 1 to 3 Skill or training required 2 to 3 Technological resources 2 to 3 Financial resources 1 to 3 Range for ranking is 1 (least amount) to 5 (most demanding). Example: FAO, etc. Crop Models Based on Understanding of plants, soil, weather, management Calculate Water Growth, yield, fertilizer & water requirements, etc Carbon Require Information (inputs): weather, management, etc Nitrogen Models – Advantages Models are assisting tools, stakeholder interaction is essential Models allow to ask “what if” questions, the relative benefit of alternative management can be highlighted: Improve planning and decision making Assist in applying lessons learned to policy issues Models permit integration across scales, sectors, and users Models – Limitations Models need to be calibrated and validated to represent reality Models need data and technical expertise Models alone do not provide an answer, stakeholder interaction is essential Can Optimal Management be an Adaptation Option for Maize Production in Argentina? Source Argentina 2º National communication 12 11 !"i 10 9 !"g 8 !"e !"h !"f 7 5 6 !"a 4 2 !"d !"b 1 !"c 3 Adaptation: Argentina Adaptation strategies in two locations of Argentina 25 Changes in maize yield (%) 20 HadCM3 B2 2050 15 Increased inputs and 10 improve management: 5 • Planting date 0 • Fertilizer -5 • Irrigation Without adaptation -10 Level 1: Changing planting date and fertilizer amount Level 2: Level 1 + Irrigation -15 Tres Arroyos Santa Rosa Travasso et al., 2006 Can Adaptation be Achieved by Optimizing Crop Varieties? Optimizing crop varieties Maize >P1 Juvenile phase Wheat >P1D photoperiodic sensitivity Crop Models Value Spatial scale of results Site to region Time to conduct analysis Daily to centuries Data needs 4 to 5 Skill or training required 5 Technological resources 4 to 5 Financial resources 4 to 5 Range for ranking is 1 (least amount) to 5 (most demanding). Example: CROPWAT, CERES, SOYGRO, APSIM, WOFOST, etc. Economic Models Consider both producers and consumers of agricultural goods (supply and demand) Economic measures of interest include: How do prices respond to production amounts? How is income maximized with different production and consumption opportunities? Economic Models (continued) Microeconomic: Farm Macroeconomic: Regional economies All: Crop yield is a primary input (demand is the other primary input) Economic models should be built bottom-up Agricultural Trade Models Parry et al., 1999. Social Sciences Tools Surveys and interviews Allow the direct input of stakeholders (demand-driven science), provide expert judgment in a rigorous way Surveys and Interviews Development of adaptation options with stakeholders Soybean planting dates Argentina Economic and Social Tools Value Spatial scale of results Yearly to centuries Time to conduct analysis Site to region Data needs 4 to 5 Skill or training required 5 Technological resources 4 to 5 Financial resources 4 to 5 Range for ranking is 1 (least amount) to 5 (most demanding). Examples: Farm, econometric, I/O, national economies, BLS, … Integrators: GIS Without CO2 effects: -9% With CO2 effects: +19% Potential changes in maize production for the year 2080 under downscaled scenario based on HadCM3 SRES A2. Integrators: GIS Value Spatial scale of results monthly to centuries Time to conduct analysis region Data needs 5 Skill or training required 5 Technological resources 5 Financial resources 5 Range for ranking is 1 (least amount) to 5 (most demanding). Example: …. All possible applications …. Conclusions The merits of each approach vary according to the level of impact being studied, and they may frequently be mutually supportive For example, simple agroclimatic indices often provide the necessary information on how crops respond to varying rainfall and temperature in wide geographical areas; cropspecific models are use to test alternative management that can in turn be used as a component for an economic model that analyses regional vulnerability or national adaptation strategies Therefore, a mix of approaches is often the most rewarding Datasets Data are required data to define climatic, nonclimatic environmental, and socioeconomic baselines and scenarios Data are limited Discussion on supporting databases and data sources IPCC Working Group 1: “A Collective Picture of a Warming World” Valencia - Annual T(C) 1900-2000 Valencia - Dec-Feb T(C) 1900-2000 Valencia - Jun-Aug T(C) 1900-2000 20 13 26 19 12 25 18 11 24 17 10 23 16 9 22 15 8 1880 1900 1920 1940 1960 1980 2000 2020 21 1880 1900 1920 1940 1960 1980 2000 2020 Source of data: GISS/NASA 1880 1900 1920 1940 1960 1980 2000 2020