Probing unexplored territories with MUSE a second generation instrument for the VLT Roland Bacon & MUSE collaboration ESO Santiago & Paranal Nov 2006

Download Report

Transcript Probing unexplored territories with MUSE a second generation instrument for the VLT Roland Bacon & MUSE collaboration ESO Santiago & Paranal Nov 2006

Probing unexplored
territories with MUSE
a second generation
instrument for the VLT
Roland Bacon & MUSE collaboration
ESO Santiago & Paranal Nov 2006
Chile – Nov06
The MUSE Collaboration
 Bacon R., Bauer S., Boehm P., Boudon D., Brau-Nogué
S., Caillier P., Capoani L., Carollo C.M., Champavert N.,
Contini T., Daguisé E., Dallé D., Delabre B., Devriendt
J., Dreizler S., Dubois J., Dupieux M., Dupin J.P.,
Emsellem E., Ferruit P., Franx M., Gallou G., Gerssen
J., Guiderdoni B., Hahn T., Hofmann D., Jarno A., Kelz
A., Koehler C., Kollatschny W., Kosmalski J., Laurent
F., Lilly S.J., Lizon J., Loupias M., Lynn S., Manescau
A., McDermid R.M., Monstein C., Nicklas H., Parès L.,
Pasquini L., Pécontal-Rousset A., Pécontal E., Pello R.,
Petit C., Picat J-P., Popow E., Quirrenbach A., Reiss R.,
Renault E., Roth M., Schaye J., Soucail G., Steinmetz
M., Stroebele S., Stuik R., Weilbacher P., Wozniak H.,
de Zeeuw P.T.
p.2
Chile – Nov06
Spectroscopy: the classical
approach (1)
 Imaging + MOS
– 1: Imaging
– 2: Selection
– 3: Spectroscopy
 Prerequisite
– To see objects
– To select objects
 Best for
– Precise scientific
question  efficient
selection
– Minimized spectrographic
detector cost
p.3
UDF
Chile – Nov06
Spectroscopy: the classical
approach (2)
 Limitations
– Doesn’t work when you cannot see the
objects
– Not efficient if the selection process is not
accurate enough
– Need to observe twice (imaging and
spectroscopy)
– MOS not efficient if object density is high
– Get answer to the addressed question and
not more … small discovery space
p.4
Chile – Nov06
Spectroscopy: the new
route (1)
 Get everything!
– Eliminates preimaging
– Eliminates preselection
– Observe only once
– Large discovery
space
p.5
UDF
Chile – Nov06
Spectroscopy: the new
route (2)
 The ultimate 3D spectrograph
– The best of both worlds
 Imaging: wide field of view and high spatial
resolution
 Spectrography: wide, simultaneous spectral
range and high resolving power
p.6
Chile – Nov06
MUSE-WFM: The big step
forward
4096 pixels
370 106 pixels
90,000 spaxels
AO
Laser guide stars
High throughput
Stability
p.7
Chile – Nov06
3D deep field: the goal
 Comprehensive study of the faint galaxy
population over a wide range of redshift
0.2
arcmin²)
1 arcmin
– Wide range of redshift for
Lya
 Z=2.8-6.7
 Vol 2.2 106 Mpc3 (SF 200
– Faint
 Progenitor of MW type galaxies
up to z=6.7
– Comprehensive
 Detection, statistics
(luminosity function,
clustering), star formation
One deep field (80 hours)
history, diffuse ionized gas,
interaction with IGM, spatial
450 galaxies
information, nuclear activity, …
p.8
3.2
2.8
4.7
6.7
z
Chile – Nov06
Deep Field - Lya
 Continuum of high z Lya galaxies (z=56.7)
ground based limit
00% with IAB<26.5
03% with IAB<28 (HDF)
HST limit
14% with IAB<29 (UDF)
JWST ?
37% with IAB<30
64% with IAB<31
83% with IAB<32
MUSE
100% with F>3.9 10-19 erg.s-1.cm-2
p.9
Chile – Nov06
0.2
Effect of spatial
resolution
z
z
2.8
4.7
Intensity in log scale
3.2
Continuum
p.10
6.7
Seeing limited observations in poor seeing conditions
260 gal.arcmin-2 in total, 75 gal.arcmin-2 in z=[4-6.7] Lya
Chile – Nov06
0.2
Effect of spatial
resolution
z
z
2.8
4.7
Intensity in log scale
3.2
Continuum
p.11
AO observations in good seeing conditions
6.7
399 gal.arcmin-2 in total, 132 gal.arcmin-2 in z=[4-6.7]Lya
Chile – Nov06
3D deep field: simultaneity
and serendipity
 High z Lya emitters
 Reionization
 Intermediate z galaxies
 Fluorescent emission
 Feedback processes
 Gravitational lensing
 Spatially resolved
spectroscopy
 Late forming pop III
 Active galactic nuclei
 Merger rate
 Development of dark
All at once + the unknown !!
p.12
halo
Chile – Nov06
Stellar population: Massive
spectroscopy
 Survey of nearby disk
galaxies
– 25 exposures of 4 hour:
5x5 arcmin²
 Search for
– Massive stars
 1000/galaxie
– Planetary nebulae
 ~100/galaxie
– HII regions
– Rare objects
 LBV, WN/Ofpe, B[e],
Pre-OWL science
GAIA complementarity
p.13

WN, WC
SNR, novae, ultraluminous X-ray source
– Diffuse ISM
Chile – Nov06

Changing spatial scale


Changing AO optimization
& configuration
Spatial resolution

p.16
MUSE-NFM: Getting even
more from MUSE
– 0.2  0.025 arcsec
– FOV 7.5x7.5 arcsec²
– Diffraction limited
– Strehl > 10% @ 0.65 µm
Sinfoni
–
–
–
–
0.025 arcsec
0.8x0.8 arcsec²
1-2.5 µm
Strehl 30%@K
SINFONI 2.2µm
MUSE 0.85µm
MUSE 0.65µm
Chile – Nov06
AGN environment
 Circum-nuclear gas
disk
 Emission cone
p.17
Chile – Nov06
p.19
Instrument
description
Chile – Nov06
Challenge & Innovation
 Challenge
–
–
–
–
Achieve high throughput
Achieve high spatial resolution
Achieve high optical quality
And keep cost under control
 Innovation
– Slicer: Advanced concept, diamond machining
– Spectrograph: new concept adapted to small
industrial serie
– Grating: VPHG with broad response
– AO: ground layer correction
– Small serie industrial development
p.20
System
Chile – Nov06
Calibration Unit
Fore-Optics
GALACSI
Splitting and Relay Optics
Main Structure
p.21
24 IFUs
=
Image Slicer
+
Spectrograph
+
Detector
+
Cryogenic system
GALACSI WFM
Chile – Nov06
 Deformable Secondary Mirror
– ~1170 actuators
– ~500 Hz
 4 LGS, 1 VIS NGS
Natural
Guide
Star
1’x1’
Scientific
FoV
– NGS pick-up in 3-4’
– Sky coverage 50-80%
– Uniform PSF over FoV
3-4’
NGS`search
field
p.23
(4x)
Laser Guide
Star
GALACSI opto mechanics
Chile – Nov06
LGS
WFS
4’ Field
selector
Reimaging lens
F/4.0
LGS
WFS
p.24
LGS Focus
compensation
Visible
TT
Sensor
Nasmyth Adaptor flange
500 mm BFD
Chile – Nov06
Optical Derotator
Fore Optics
 Derotate
 Enlarge
 Anamorphose
 Notch Na

Narrow Field Mode
FO module
p.25



Filter
Blue cutoff
Filter
Lyot Stop
ADC (NFM)
IR Dichroic
(NFM)
Chile – Nov06
Field Splitter
 Split the FoV
in 24 subfields
 Shutter
p.26
WFM Fine Guiding System
Chile – Nov06



1kx1k CCD
p.27
Correct for relative
motions between
GALACSI and
Nasmyth Platform
(incl. Derotator
wobble)
Use stars in the 4
upper corners
Cross-correlation at
1-0.1 Hz
NFM Fine Guiding System
Chile – Nov06
IR detector
Dichroic
p.28
 Tip/Tilt + Focus
on the object
using WFS IR 11.7 µm
Chile – Nov06
p.29
Relay Optics
Chile – Nov06
 Image
Dissector
Array
– 4x12 thin
off-axis
spherical
mirrors
 33x0.9 mm
 Sharp edge <
10 µm
 Tilt accuracy
< 1 arcmin
p.30
Image Slicer
Chile – Nov06
 Focusing
Mirror
Array
– 4x12 offaxis
spherical
mirrors
 6x2 mm
p.32
Image Slicer
Spectrograph
Chile – Nov06
 Camera
– F/1.9 x
F/3.8
Aspheric Surface
VPHG + Lens
p.33
Spherico-cylindrical lens
Chile – Nov06
Vacuum
Close
Cycle
Cooling
Detector
- NGC
p.35
Chile – Nov06
p.36
Chile – Nov06
The challenge of data
reduction and data analysis
 Volume
– One exposure is 4.108
pixels
– One deep-field is 80
exposures
 Complexity
– Ex: Optimal summation of
80 exposures
– Ex: PSF evolution with
field, wavelength, time (a
4D problem)
– Ex: Spectra extraction in
dense stellar environment
– Ex: Blind search of deep
fields
p.37
Schedule/Milestones
Phase A
Chile – Nov06
Design Phase
2005
KO
1/05
2006
OPDR
2007
2008
PDR
FDR
Manufacturing Assembly Integration and Test Phase
2009
KO
p.38
2010
2011
PAE
7/11
2012
PAC
12/12
MUSE on astronomy
roadmap
Chile – Nov06
GAIA
JWST
VLT 2nd gen
MUSE
ALMA
Full operation
2011/2012
p.39
ELT