ESE680-002 (ESE534): Computer Organization Day 6: January 29, 2007 VLSI Scaling Penn ESE680-002 Spring 2007 -- DeHon.
Download ReportTranscript ESE680-002 (ESE534): Computer Organization Day 6: January 29, 2007 VLSI Scaling Penn ESE680-002 Spring 2007 -- DeHon.
ESE680-002 (ESE534): Computer Organization Day 6: January 29, 2007 VLSI Scaling 1 Penn ESE680-002 Spring 2007 -- DeHon Today • • • • • VLSI Scaling Rules Effects Historical/predicted scaling Variations (cheating) Limits 2 Penn ESE680-002 Spring 2007 -- DeHon Why Care? • In this game, we must be able to predict the future • Rapid technology advance • Reason about changes and trends • re-evaluate prior solutions given technology at time X. 3 Penn ESE680-002 Spring 2007 -- DeHon Why Care • Cannot compare against what competitor does today – but what they can do at time you can ship • Careful not to fall off curve – lose out to someone who can stay on curve 4 Penn ESE680-002 Spring 2007 -- DeHon Scaling • Premise: features scale “uniformly” – everything gets better in a predictable manner • Parameters: l (lambda) -- Mead and Conway (class) S -- Bohr 1/k -- Dennard 5 Penn ESE680-002 Spring 2007 -- DeHon Feature Size l is half the minimum feature size in a VLSI process [minimum feature usually channel width] 6 Penn ESE680-002 Spring 2007 -- DeHon Scaling • • • • • Channel Length (L) Channel Width (W) Oxide Thickness (Tox) Doping (Na) Voltage (V) 7 Penn ESE680-002 Spring 2007 -- DeHon Scaling • • • • • Channel Length (L) l Channel Width (W) l Oxide Thickness (Tox) l Doping (Na) 1/l Voltage (V) l 8 Penn ESE680-002 Spring 2007 -- DeHon Effects? • • • • • • • • Area Capacitance Resistance Threshold (Vth) Current (Id) Gate Delay (tgd) Wire Delay (twire) Power 9 Penn ESE680-002 Spring 2007 -- DeHon Area l l/k A=L*W A A/k2 130nm 90nm 50% area 2× capacity same area 10 Penn ESE680-002 Spring 2007 -- DeHon Area Perspective 11 Penn ESE680-002 Spring 2007 -- DeHon Capacity Scaling from Intel 12 Penn ESE680-002 Spring 2007 -- DeHon ITRS 2005 Moore’s Law 13 Penn ESE680-002 Spring 2007 -- DeHon Capacitance • Capacitance per unit area – Cox= eSiO2/Tox – Tox Tox/k – Cox k Cox 14 Penn ESE680-002 Spring 2007 -- DeHon Capacitance • Gate Capacitance Cgate= A*Cox A A/k2 Cox k Cox Cgate Cgate /k 15 Penn ESE680-002 Spring 2007 -- DeHon Threshold Voltage 16 Penn ESE680-002 Spring 2007 -- DeHon Threshold Voltage • VTH VTH /k 17 Penn ESE680-002 Spring 2007 -- DeHon Current • Saturation Current Id=(mCOX/2)(W/L)(Vgs-VTH)2 Vgs=V V /k VTH VTH /k W W/k L L/k Cox k Cox Id Id/k 18 Penn ESE680-002 Spring 2007 -- DeHon Gate Delay tgd=Q/I=(CV)/I V V /k Id Id/k C C /k tgd tgd /k 19 Penn ESE680-002 Spring 2007 -- DeHon Overall Scaling Results, Transistor Speed and Leakage. Preliminary Data from 2005 ITRS. •HP = High-Performance Logic •LOP = Low Operating Power Logic •LSTP = Low Standby Power Logic Leakage Current Intrinsic Transistor Delay, t = CV/I 10.00 (HP: standby power dissipation issues) (lower delay = higher speed) 1.E+00 HP LOP 1.E-01 LSTP 1.00 CV/I (ps) (ps) Isd,leak (uA/um) 1.E-02 LSTP Target: Isd,leak ~ 10 pA/um 1.E-04 0.10 HP Target: 17%/yr, historical rate 0.01 2005 LOP 1.E-03 2007 2009 2011 2013 2015 17%/yr rate 2017 1.E-05 Planar Bulk MOSFETs 1.E-06 2005 2019 2007 2009 2011 Advanced MOSFETs 2013 2015 Calendar year Calendar Year 20 2017 2019 Resistance • R=rL/(W*t) • W W/k • L, t similar • RkR 21 Penn ESE680-002 Spring 2007 -- DeHon Wire Delay twire=RC R -> k R C -> C /k twire -> twire • …assuming (logical) wire lengths remain constant... • Assume short wire or buffered wire • (unbuffered wire ultimately scales as length squared) 22 Penn ESE680-002 Spring 2007 -- DeHon Power Dissipation (Static Load) • Resistive Power – P=V*I – V V /k – Id Id/k – P P /k2 23 Penn ESE680-002 Spring 2007 -- DeHon Power Dissipation (Dynamic) • Capacitive (Dis)charging P=(1/2)CV2f V V /k C C /k P P/k3 • Increase Frequency? tgd tgd /k So: f kf ? P P/k2 24 Penn ESE680-002 Spring 2007 -- DeHon …and leakage 25 Penn ESE680-002 Spring 2007 -- DeHon [source: Borkar/Intel, Micro37, 12/04] Intel on Leakage 26 Penn ESE680-002 Spring 2007 -- DeHon [source: Borkar/Intel, Micro37, 12/04] Effects? • • • • • • • • Area 1/k2 Capacitance 1/k Resistance k Threshold (Vth) 1/k Current (Id) 1/k Gate Delay (tgd) 1/k Wire Delay (twire) 1 Power 1/k2 1/k3 27 Penn ESE680-002 Spring 2007 -- DeHon ITRS Roadmap • Semiconductor Industry rides this scaling curve • Try to predict where industry going – (requirements…self fulfilling prophecy) • http://public.itrs.net 28 Penn ESE680-002 Spring 2007 -- DeHon MOS Transistor Scaling (1974 to present) S=0.7 [0.5x per 2 nodes] Pitch Source: 2001 ITRS - Exec. Summary, ORTC Figure Penn ESE680-002 Spring 2007 -- DeHon Gate [from Andrew Kahng] 29 Half Pitch (= Pitch/2) Definition Metal Pitch (Typical DRAM) Source: 2001 ITRS - Exec. Summary, ORTC Figure Penn ESE680-002 Spring 2007 -- DeHon Poly Pitch (Typical MPU/ASIC) [from Andrew Kahng] 30 Node Cycle Time: 0.7x 0.7x Log Half-Pitch Scaling Calculator + 1994 NTRS .7x/3yrs Actual .7x/2yrs Linear Time 250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16 0.5x N N+1 Node Cycle Time (T yrs): N+2 *CARR(T) = [(0.5)^(1/2T yrs)] - 1 * CARR(T) = Compound Annual Reduction Rate (@ cycle time period, T) Source: 2001 ITRS - Exec. Summary, ORTC Figure Penn ESE680-002 Spring 2007 -- DeHon CARR(3 yrs) = -10.9% CARR(2 yrs) = -15.9% [from Andrew Kahng] 31 ITRS 2005 32 Penn ESE680-002 Spring 2007 -- DeHon ITRS 2003,2005 Gate/Wire Scaling 33 Penn ESE680-002 Spring 2007 -- DeHon What happens to delays? • If delays in gates/switching? • If delays in interconnect? • Logical interconnect lengths? 34 Penn ESE680-002 Spring 2007 -- DeHon Delays? • If delays in gates/switching? – Delay reduce with 1/k [l] 35 Penn ESE680-002 Spring 2007 -- DeHon Delays • Logical capacities growing • Wirelengths? – No locality: Lk – Rent’s Rule • L n(p-0.5) • [p>0.5] (slower!) 36 Penn ESE680-002 Spring 2007 -- DeHon Compute Density • Density = compute / (Area * Time) k3>compute density scaling>k k3: gates dominate, p<0.5 k2: moderate p, good fraction of gate delay – [p from Rent’s Rule again – more on Day14] k : large p (wires dominate area and delay) 37 Penn ESE680-002 Spring 2007 -- DeHon Power Density • P-> P /k2 (static, or increase frequency) • P-> P/k3 (dynamic, same freq.) • A -> A/k2 • P/A P/A … or … P/kA 38 Penn ESE680-002 Spring 2007 -- DeHon Cheating… • Don’t like some of the implications – High resistance wires – Higher capacitance – Quantum tunneling – Need for more wiring – Not scale speed fast enough 39 Penn ESE680-002 Spring 2007 -- DeHon Improving Resistance • • • • R=rL/(W*t) W W/k L, t similar RkR Don’t scale t quite as fast. Decrease r (copper) 40 Penn ESE680-002 Spring 2007 -- DeHon 41 Penn ESE680-002 Spring 2007 -- DeHon Capacitance and Leakage • Capacitance per unit area – Cox= eSiO2/Tox – Tox Tox/k – Cox k Cox Reduce Dielectric Constant e (interconnect) and Increase Dielectric to substitute for scaling Tox (gate quantum tunneling) Penn ESE680-002 Spring 2007 -- DeHon 42 Threshold Voltage 43 Penn ESE680-002 Spring 2007 -- DeHon ITRS 2005 44 Penn ESE680-002 Spring 2007 -- DeHon High-K dielectric Survey Wong/IBM J. of R&D, V46N2/3P133--168 Penn ESE680-002 Spring 2007 -- DeHon 45 Intel Saturday NYT Announcement • Intel Says Chips Will Run Faster, Using Less Power – NYT 1/27/07, John Markov – Claim: “most significant change in the materials used to manufacture silicon chips since Intel pioneered the modern integratedcircuit transistor more than four decades ago” – “Intel’s advance was in part in finding a new insulator composed of an alloy of hafnium…will replace the use of silicon dioxide.” 46 Penn ESE680-002 Spring 2007 -- DeHon Wire Layers = More Wiring 47 Penn ESE680-002 Spring 2007 -- DeHon Typical chip cross-section illustrating hierarchical scaling methodology Penn ESE680-002 Spring 2007 -- DeHon [ITRS2005 Interconnect Chapter] 48 Improving Gate Delay tgd=Q/I=(CV)/I V V /k Id=(mCOX/2)(W/L)(Vgs-VTH)2 Id Id/k C C /k tgd tgd /k Lower C. Don’t scale V. Penn ESE680-002 Spring 2007 -- DeHon Don’t scale V: VV IkI tgd tgd /k2 49 …But Power Dissipation (Dynamic) • Capacitive (Dis)charging P=(1/2)CV2f V V /k C C /k P P/k3 • Increase Frequency? f kf ? P P/k2 If not scale V, power dissipation not scale. 50 Penn ESE680-002 Spring 2007 -- DeHon …And Power Density • P P (increase frequency) • P> P/k (dynamic, same freq.) A A/k2 • P/A kP/A … or … k2P/A • Power Density Increases …this is where some companies have gotten into trouble… 51 Penn ESE680-002 Spring 2007 -- DeHon Intel on Leakage 52 Penn ESE680-002 Spring 2007 -- DeHon [source: Borkar/Intel, Micro37, 12/04] Physical Limits • Doping? • Features? 53 Penn ESE680-002 Spring 2007 -- DeHon Physical Limits • Depended on – bulk effects • doping • current (many electrons) • mean free path in conductor – localized to conductors • Eventually – single electrons, atoms – distances close enough to allow tunneling 54 Penn ESE680-002 Spring 2007 -- DeHon Dopants/Transistor 1000 100 1 10 100 0 500 250 130 65 Technology Node (nm) 32 16 Dopant Fluctuation Mean Number of Dopant Atoms 10000 0.1 0.01 1000 100 Technology Nodes (nm) 55 Penn ESE680-002 Spring 2007 -- DeHon 10 Electrons e=1.6×10-19 C Penn ESE680-002 Spring 2007 -- DeHon How many electrons? 56 What Is A “Red Brick” ? • Red Brick = ITRS Technology Requirement with no known solution • Alternate definition: Red Brick = something that REQUIRES billions of dollars in R&D investment Penn ESE680-002 Spring 2007 -- DeHon [from Andrew Kahng] 57 The “Red Brick Wall” - 2001 ITRS vs 1999 Source: Semiconductor International - http://www.e-insite.net/semiconductor/index.asp?layout=article&articleId=CA187876 [from Andrew Kahng] Penn ESE680-002 Spring 2007 -- DeHon 58 ITRS 2005 … 59 Penn ESE680-002 Spring 2007 -- DeHon Conventional Scaling • Ends in your lifetime • …perhaps in your first few years out of school… • Perhaps already: – "Basically, this is the end of scaling.” • May 2005, Bernard Meyerson, V.P. and chief technologist for IBM's systems and technology group 60 Penn ESE680-002 Spring 2007 -- DeHon Finishing Up... 61 Penn ESE680-002 Spring 2007 -- DeHon Big Ideas [MSB Ideas] • Moderately predictable VLSI Scaling – unprecedented capacities/capability growth for engineered systems – change – be prepared to exploit – account for in comparing across time – …but not for much longer 62 Penn ESE680-002 Spring 2007 -- DeHon Big Ideas [MSB-1 Ideas] • Uniform scaling reasonably accurate for past couple of decades • Area increase k2 – Real capacity maybe a little less? • Gate delay decreases (1/k) • Wire delay not decrease, maybe increase • Overall delay decrease less than (1/k) 63 Penn ESE680-002 Spring 2007 -- DeHon