Motion Deblurring Using Hybrid Imaging Moshe Ben-Ezra and Shree K. Nayar Columbia University IEEE CVPR Conference June 2003, Madison, USA.

Download Report

Transcript Motion Deblurring Using Hybrid Imaging Moshe Ben-Ezra and Shree K. Nayar Columbia University IEEE CVPR Conference June 2003, Madison, USA.

Motion Deblurring Using
Hybrid Imaging
Moshe Ben-Ezra and Shree K. Nayar
Columbia University
IEEE CVPR Conference
June 2003, Madison, USA
Image Recording Requires Time
Niépce 1827
8 hours exposure
Daguerre 1829
1/2 hour exposure
Motion Blur is Everywhere
Object Motion
Camera Motion
Stabilized Lenses
1/250 second (< -1 stop)
1/15 second (< -5 stops)
 Stabilization drifts with time
 Rotation only
Canon Stabilized lens 400mm
Blind Image Deconvolution
 Accurate Point Spread Function (PSF) Needed.
Energy ~ 1/ speed
Motion Point Spread Function (PSF)
H
Motion PSF is a
Function of:
1. Motion path
2. Motion speed
Y
X
Spatial spread
PSF Detector?
PSF Detector
Camera
Can the PSF detector
be a small and simple
imaging device ?
Fundamental Limits of Imaging
Photon flux
Detector
Electron wells
Pixel’s Signal
Noise
Detector’s noise level
Temporal resolution (fps)
Fundamental Resolution Tradeoff
Hybrid imaging system
3
Hi-resolution camera
30
Conventional video camera
130
Low-resolution camera
3M
2048x1536
330K
75K Spatial resolution (pixels)
720x480 320x240
A Hybrid camera enjoys both worlds
Overview of Approach
Low-Res. camera
y
Motion Analysis
x
Same time period
PSF Estimation
Hi-Res. camera
Deconvolution
Global Motion From Low Resolution Detector
 I
I I 
arg min  u  v  
y t 
( u ,v )
 x
2
Objective function (Optical flow constraint)
Rotation
Translation
u cos sin  xx
  
 
v

sin

cos

y
y
  
 

0
1 
1
 
 0

1


Lucas Kanade
Simulations: Motion Accuracy from Low- Res. Images
Average Motion Error in Pixels
=3
=9
 = 27
 = 81
640x640 (1:1)
0.01
0.01
0.02
0.04
320x320 (1:4)
0.03
0.04
0.05
0.1
160x160 (1:16)
0.03
0.04
0.07
0.4
80x80 (1:64)
0.13
0.21
0.39
2.6
Noise
Resolution
Constraints on Continuous PSF
 Energy conservation
constraint:
 h( x, y)dx dy  1
xy
 Constant flux
t  t

assumption:
t
 Smoothness
constraint:

h(x(t), y(t))dt 
t
tend  t start
Path is continuous and
twice differentiable
PSF Estimation from Computed Motion
y
f1
f2
f3
y
f6
f4 f5
f1
f2
f3
f4 f5
…
Frame 2
f6
Frame 5
x
h4
h2
h
h3
x
h4
h5
h2
h
y
Frame 2
…
Frame 5
h3
h5
y
Frame 2
…
Frame 5
x
Deconvolution of High Resolution Image
 Standard iterative ratio-based algorithm*
Image estimate
PSF
Error
(0)
ˆ
O ( x)  I ( x)
Oˆ
( k 1)
I
(
x
)


ˆ
( x)  O ( x)  S ( x) 
,

(k )
ˆ
S O 

(k )
 Guaranties non-negative pixel result
* Richardson [72] Lucy [74]
Designs for Hybrid Imaging
A rig of two cameras
Using a beam splitter
Using a special chip
Our Prototype: Rig of Two Cameras
Primary detector
(2048x1536)
Secondary detector
(360x240)
Resolution ratio of 1 : 36
Example 1 - Blurred Hi-Res Image
f = 633mm, Exp. Time 1 Sec (> -9 stops)
PSF Estimation from Motion
Estimated PSF
Low resolution sequence.
0.06
Y (Pixels)
90
10
10 X (Pixels)
f = 633mm, Exp. Time 1 Sec
130
0.001
Deblurred Image
f = 633mm, Exp. Time 1 Sec
Example 1 - Comparison
Tripod image (Ground Truth)
Blurred image
Deblurred image
f = 633mm, Exp. Time 1 Sec
Example 2 - Blurred Night Image
f = 884mm, Exp. Time 4 Sec (> -11 stops)
PSF Estimation from Motion
Low resolution sequence.
0.003
Y (Pixels)
30
10
0.001
10 X (Pixels)
f = 884mm, Exp. Time 4 Sec
60
Deblurred Night Image
f = 884mm, Exp. Time 4 Sec
Example 3 - Comparison
Tripod image (Ground Truth)
Blurred image
Deblurred image
f = 884mm, Exp. Time 4 Sec
Object Deblurring Problem
Moving objects blend into the background
Hybrid Imaging Solution (simulated)
Requires clear high-resolution background image
Quantifying The Affect of Motion Blur
 Empirical tests: RMS error.
 Volume of Solutions (Linear Model):
Input
Images
High-Resolution
Image
1
1
y  Ax  z  x  A y  A z
Blur
Uncertainty
Decimation (Quantization)
Volume of Solutions
1/det(A)