On the efficient numerical simulation of kinetic theory models of complex fluids and flows Francisco (Paco) Chinesta & Amine Ammar LMSP UMR CNRS –

Download Report

Transcript On the efficient numerical simulation of kinetic theory models of complex fluids and flows Francisco (Paco) Chinesta & Amine Ammar LMSP UMR CNRS –

On the efficient numerical simulation
of kinetic theory models of complex
fluids and flows
Francisco (Paco) Chinesta & Amine Ammar
LMSP UMR CNRS – ENSAM
PARIS, France
[email protected]
Laboratoire de Rhéologie
GRENOBLE, France
In collaboration with:
R. Keunings
Polymer solutions and melts
M. Laso
LCP
M. Mackley & A. Ma
Suspensions of CNT
Molecular dynamics
The
Brownian dynamics
different
Kinetic theory:
scales:
q
R
q1
2
Fokker-Planck Eq.
r1
ψ( x, y, z, t, q1,, qN )
r2
(3  1  3N ) D
Deterministic,
Stochastic &
BCF solvers
x, y , z , t
rN+1
qN
Constitutive Eq.
General Micro-Macro approach
Div   X   A
Div v  0
   pId  2N D  
   g ( q) ( q) d q
C
d 
 
  

  A  
D

dt  q
q 
 q 

Solving the deterministic
Fokker-Planck equation
New efficient solvers for:
I. Reducing the simulation time of grid
discretizations.
II. Computing multidimensional solutions
where grid methods don’t run.
I. Reducing the simulation time
The idea …
U  u( xi , t p )
p
Model: PDE
AU  F
p
n
U    j
p
j 1
p
j
p 1
N N
Model: PDE
a  f
p
+ Karhunen-Loève decomposition
i 1, , N , p 1, , P
p 1
R AU F
n  n 1
 n1  R
P
P1
n n
n
N
1. FENE
Model
1D
q
3D
1
H(q) 
q2
1 2
b
H(q)
H( q ) 
1
1
q
2
b2
300.000 FEM dof
~10 dof
~10 functions (1D, 2D or 3D)
2. Non-Linear
Models: Doi LCP
With only 6 d.o.f. !!
Larson & Ottinger
(Macromolecules, 1991)
(u, v, w)  (0,0,  x )
II. Computing multidimensional solutions
q1
q2
It is time for dreaming!
r1


1    
  (q ) 
 A

t
q
4 q  q 
r2
q  (q1, q2 , , qN )
  (q1 , q2 ,, q N , x, y, z, t )
rN+1
qN
For N springs, the model is defined
in a 3N+3+1 dimensional space !!
~ 10 approximation functions are
p 1
enough  a  ~1010  p 
  
~101
~101
BUT
~10
 ( x1, x2 , , x3N 3 , t )  i (t ) i ( x1, x2 , , x3N 3 )
i 1
How defining those
high-dimensional functions ?
Natural answer: with a nodal description
10 nodes = 10 function values
1D
q1
1D
q2
10 dof
10x10 dof
2D
80D
r1
r2
1080 dof
rN+1
1080 ~ presumed number of
elementary particles in the universe !!
qN
>1000D
No function can be defined in a such space from
a computational point of view !!
F.E.M.
Computing multidimensional solutions
The idea …
n  n 1
n
u( x, y )   j Fj ( x )G j ( y )
j 1
Model: PDE
Fn 1 ( x )
Gn 1 ( y )
 n 1
FEM
( x1,
GRID
DOF  N DIM  100010  1030
n
, x10 )    j Fj1 ( x1 )
j 1
Fj10 ( x10 )
DOF  N  DIM  1000  10  104
1. MBS-FENE
q2
q1
(q1, q2 )  1F1 (q1 )G1(q2 )

Solution EF
q2
q1
G
q2
F
q1
(q1, q2 )  1F1 (q1 )G1 (q2 )  2 F2 (q1 )G2 (q2 )

Solution EF
q2
q1
G
q2
F
q1
(q1, q2 )  1F1(q1 )G1 (q2 )  2 F2 (q1 )G2 (q2 )  3F3 (q1 )G3 (q2 )

Solution EF
q2
q1
G
q2
F
q1
(q1, q2 ) 1F1(q1 )G1(q2 )  2 F2 (q1 )G2 (q2 )
 4 F4 (q1 )G4 (q2 )

Solution EF
q2
q1
G
q2
F
q1
(q1, q2 ) 1F1(q1 )G1(q2 )  2 F2 (q1 )G2 (q2 )
 5F5 (q1 )G5 (q2 )

Solution EF
q2
q1
G
q2
F
q1
(q1, q2 ) 1F1(q1 )G1(q2 )  2 F2 (q1 )G2 (q2 )
 6 F6 (q1 )G6 (q2 )

Solution EF
q2
q1
G
q2
F
q1
(q1, q2 ) 1F1(q1 )G1(q2 )  2 F2 (q1 )G2 (q2 )
 7 F7 (q1 )G7 (q2 )

Solution EF
q2
q1
G
q2
F
q1
(q1, q2 ) 1F1 (q1 )G1 (q2 )  2 F2 (q1 )G2 (q2 )
 8F8 (q1 )G8 (q2 )

Solution EF
q2
q1
G
q2
F
q1
(q1, q2 ) 1F1(q1 )G1(q2 )  2 F2 (q1 )G2 (q2 )
 9 F9 (q1 )G9 (q2 )

Solution EF
q2
q1
G
q2
F
q1
(q1, q2 )  1F1 (q1 )G1 (q2 )  2 F2 (q1 )G2 (q2 )
 10 F10 (q1 )G10 (q2 )

Solution EF
q2
q1
G
q2
F
q1
(q1, q2 )  1F1(q1 )G1 (q2 )  2 F2 (q1 )G2 (q2 )
 11F11(q1 )G11 (q2 )

Solution EF
q2
q1
G
q2
F
q1
1D/9D
q1
q2
809 ~ 1016 FEM dof
2D/10D 1040 FEM dof
q9
80x9 RM dof
100.000 RM dof
2. Complex Flows
n
( x, q, t )    j Fj ( x)  G j ( q)  H j (t )
j 1
Example: Flow involving short fiber suspensions
Kinematics:
FEM-DVESS
3. Entangled polymer models based on
reptation motion
s
u
s=0
s=1
Doi-Edwards Model
  2 
D
  du 

      Dr 
Dt
u  dt 
s 2 


n
Ottinger Model: double
reptation, CCR, chain
stretching, …
  u, s    j Fj  u  G j ( s)
j 1
Ongoing works : (I) Stochastic
models can be also reduced !
y=1
 1
Reduced Brownian Configurations Fields
Discretization
B ( I  G) Ba
T
n 1
B F
T
n
4x4
1000x1000
1. Solve i=1 and computed the
reduced approximation basis
2. Solve for all i>1 the reduced
problem:
Epoxy-A
0.025% MWNT in epoxy-A
Apparent Viscosity [Pa-s]
Ongoing works: (II)
Suspensions of CNT:
Aggregation/Orientati
on model
10000
0.05% MWNT in epoxy-A
1000
0.1% MWNT in epoxy-A
0.25% MWNT in epoxy-A
0.5% MWNT in epoxy-A
100
10
1
0,1
1
10
Shear rate [s-1]
Enhanced modeling:
ψ( x, y, z, t, n, p)
+ The associated Fokker-Planck equation
100
1000
Perspectives
•
Enhanced kinetic model for CNT suspensions
taking into account orientation and aggregation
effects: FP & BD simulations. Collaboration with M.
Mackley
•
Reduction of Stochastic, Brownian and molecular
dynamics simulations.
•
Fast micro-macro simulations of complex flows:
Lattice-Boltzmann & Reduced-FP; and many others
mathematical topics (stabilization, wavelet bases,
mixed formulations, enhanced particles methods,
…). Collaboration with T. Phillips.