A Practical Introduction to Stellar Nonradial Oscillations (i) Rich Townsend University of Delaware ESO Chile ̶ November 2006

Download Report

Transcript A Practical Introduction to Stellar Nonradial Oscillations (i) Rich Townsend University of Delaware ESO Chile ̶ November 2006

A Practical Introduction to Stellar
Nonradial Oscillations (i)
Rich Townsend
University of Delaware
ESO Chile ̶ November 2006
Overview
• Historical Perspective
– Radial pulsators
– Nonradial pulsators
•
•
•
•
•
Waves in stars
Global oscillations
Surface variations
Rotation effects
Driving mechanisms
p-mode Surface Variations
g-mode Surface Variations
p modes vs. g modes
Carnot Cycle
Excitation Mechanisms
• Add heat when temperature is high
• Remove heat when temperature is low
• Mechanisms:
– κ : opacity
– ε : nuclear energy
– δ : superadiabatic stratification
– γ : ionization
OPAL / OP Opacities
5 M¯ model
WN model
Brown Dwarf model
Asteroseismology
• Compare observations against models
– Frequencies
– Multi-color light curve
• Amplitudes
• Phases
– Spectroscopy
• Line-profile variations
• Mean profiles
Frequencies
Photometric Amplitudes
ℓ = 1
ℓ = 3
ℓ = 2
Line-Profile Variations
lpv: Time-Series
Modeling
• Photometric
– Semi-analytical
• Spectroscopic
– Semi-analytical
• Moments
• TVS
– Numerical
• BRUCE/KYLIE
• PULSTAR
Photometric Modeling
• Stamford & Watson (1981)
• Semi-analytical formula for flux changes
Photometry of SPB stars
Spectroscopic Modeling
•
•
•
•
•
Represent stellar surface with mesh
Perturb mesh with pulsation(s)
Rasterize mesh
Synthesize spectra for each pixel
Combine spectra
Spectral Synthesis
• For each pixel:
– Teff
– log g
–V
– 
• Interpolate spectrum in intensity grid
Pulsation & Rotation
• Coriolis force
becomes significant
when Ω/ω > 0.5
• Pulsation confined
within equatorial
waveguide
• New formula
– Townsend (2003)
– Extends Dziembowski
(1977)
– Low-frequency (SPBs)
Effects of Rotation
Townsend (2003)