Hot Massive Stars in the Local Group and beyond Rolf Kudritzki In collaboration with Fabio Bresolin, Miguel Urbaneja, Norbert Przybilla, Paco Najarro, Don Figer, Sungsoo.

Download Report

Transcript Hot Massive Stars in the Local Group and beyond Rolf Kudritzki In collaboration with Fabio Bresolin, Miguel Urbaneja, Norbert Przybilla, Paco Najarro, Don Figer, Sungsoo.

Hot Massive Stars
in the Local Group and beyond
Rolf Kudritzki
In collaboration with
Fabio Bresolin, Miguel Urbaneja, Norbert Przybilla,
Paco Najarro, Don Figer, Sungsoo Kim, Joachim Puls,
Adi Pauldrach, Wolfgang Gieren, Gregorsz Pietrzynski
and many others …
Concepcion 2007
Log Why
dN(M)
Initial Mass Function (IMF), Scalo (1986)
massive stars?
Only a tiny fraction (a few ‰) of the stars in a
spiral or irregular or starburst galaxy aremassive
massive
with masses ≥ 10 Msun.
stars
Why bother???
Because they are the ones, which
make the universe interesting!!!!
M/Msun
Concepcion 2007
A galaxy without massive stars is dull !!!
Concepcion 2007
A galaxy with massive stars is interesting !!!
Extragalactic stellar astronomy
Concepcion 2007
massive stars
• provide the light
• make the spiral arms visible
• ionize the HII regions
• energy & momentum to ISM (winds, SN)
• trigger star formation
• crucial for chemical evolution (winds, SN)
• allow you to do something!!!
Concepcion 2007
Bresolin & Kennicutt 2002,
ApJ, 572, 838
HII regions in M83
disk
element abundances
stellar content
ionizing flux, stellar
atmospheres
Hot spot
Concepcion 2007
Metal line diagnostics
Concepcion 2007
Massive stars and star formation (SF)
Massive stars perfect tracer of SF
• young
The following slides are from
• strong UV sources
Rob
Kennicutt
(2005)
 directly visible in UV (GALEX)
Workshop
on dust
“Extreme Starbursts”
 heat ISM
Lijiang,
Cina,
2005
 strong
mid & August
far IR (Spitzer)
• luminous
 ionize ISM gas
 strong recombination lines (10m, Spitzer)
!!! Diagnostics of SF physics !!!
11 Mpc Ha and Ultraviolet Survey
(11HUGS)
Kennicutt (2005)
• Ha imaging for 400 spiral-irregular galaxies within
11 Mpc of Milky Way (complete for b > 20o, B < 15)
• GALEX UV imaging (Cycle 1 Legacy project + archival
data) for 284/400 galaxies
• drift-scan integrated spectra for ~200 galaxies
• Science goals
– SFR statistics, demographics for a volume-limited sample
– the SFR burst duty cycle in dwarf galaxies (Janice Lee)
– evolution/migration of star formation within galaxies
– SFR metrics, reference for cluster, lookback studies
– HII region/cluster statistics, atlas
– an archival resource for the astronomical community
Spitzer Infrared Nearby Galaxies Survey (SINGS)
Kennicutt (2005)
• complete IRAC, MIPS imaging of 75 nearby galaxies
(3.5 – 160 mm)
• IRS, MIPS radial strip maps (10 – 100 mm)
• IRS maps of centers, 75 extranuclear sources (5–37 mm)
• ancillary dataset covering UV to radio
http://sings.stsci.edu
http://irsa.ipac.caltech.edu/data/SPITZER/SINGS/
http://data.spitzer.caltech.edu/popular/sings/
NRAO 2006
M81 CFHT
Kennicutt (2005)
GALEX FUV + NUV (1500/2500 A)
IRAC 8.0 mm
Ha + R
MIPS 24 mm
Kennicutt (2005)
(Pa region, d~6 kpc
Scoville et al. 2001)
Kennicutt (2005)
0.15 mm
8.0 mm
0.4-0.8 mm
24 mm
1.2-2.2 mm
70 mm
3.6 mm
160 mm
Kennicutt (2005)
Kennicutt (2005)
Concentration of SF vs. Total SFR for a variety of galaxy types.
SFR
area
SCUBA
sources
BCDs
LBGs
Kennicutt (2005)
SFR
SFR vs Gas Density
(Schmidt Law)
SFR
area
• disk-averaged star SFR vs
mean gas density of the disk
• a single power law of slope
N ~ 1.4 fits the full range of
galaxy types, from normal disks
to ultraluminous infrared
starburst galaxies
• does this global relation also
apply locally within galaxies?
ρgas
Kennicutt (2005)
Kennicutt et al. (2005)
Local Schmidt Law
slope= 1.41
Kennicutt (2005)
Kennicutt, Calzetti, Walter, et al. 2005, in prep.
Schmidt Law…
Whole galaxies
Kennicutt et al. 2005, in prep.
Kennicutt (2005)
Star Formation Rate versus Redshift
Sanders
(2005)
Concepcion 2007
Massive stars and star formation (SF)
Results depend fundamentally on our
knowledge of massive stars
• massive stars only ‰ of integrated IMF, but we
extrapolate SF down to 0.2 Msun
• every mistake enormously amplified
stellar mass and ionization?
stellar mass and dust heating?
stellar mass and UV radiation?
!!! Knowledge of massive stars crucial !!!
evolution of galaxies in early universe
heavily influenced by
first generations of very massive stars
cosmic web@ z=3.5
Springel & Hernquist, 2003
WMAP
very
massive
stars
First stars are very massive
hydrodynamic simulations
• Hydrodynamic simulations by Davé, Katz, & Weinberg
– Ly-α cooling radiation (green)
– Light in Ly-α from forming stars (red, yellow)
z=10
z=8
z=6
Stars forming at z=10!
Observable with a 30m telescope!
1 Mpc (comoving)
GSMT Science Working Group Report, 2003, Kudritzki et al.
http://www.aura-nio.noao.edu/gsmt_swg/SWG_Report/SWG_Report_7.2.03.pdf
Simulation
As observed through 30-meter
telescope R=3000, 105 seconds,
Barton et al., 2004, ApJ 604, L1
A possible IMF diagnostic at z=10
HeII (1640 Å)
Standard IMF
HeII (1640 Å)
Top-Heavy IMF, zero metallicity
(IMF + stellar model fluxes from
Bromm, Kudritzki, & Loeb 2001, ApJ 552,464
see also Schaerer, 2003, A&A 397, 527)
TMT: A partnership of CELT, AURA & ACURA
GMT 7-Mirror Concept
Carnegie,
Harvard/Smiths.,
Arizona,
MIT,
Michigan,
Texas
SubaruGalaxy
survey@ z =6.96
Adaptive
Optics
The most
Iyedistant
et al., 2006,
galaxies
Nature 443, 1861
@ z =7
Lα @ z =6.96
Ionization by
Massive stars
Mauna Kea
View MK  Haleakala
Population synthesis of high-z galaxies
Stellar spectra
Stellar Population
Initial Mass Function
Star Formation History
Metallicity
Stellar Evolution
Galaxy spectra
non-LTE atmospheres with winds
plus stellar evolution models
 Synthetic spectra of galxies at high z
 as a function of Z, IMF, SFR
Spectral diagnostics of high-redshift starbursts
Starburst models - fully synthetic spectra based on model atmospheres
Rix, Pettini, Leitherer, Bresolin, Kudritzki, Steidel, 2004, ApJ, 615,98
Spectral diagnostics of high-z starbursts
cB58 @ z=2.7
fully synthetic spectra
vs. observation
Rix, Pettini, Leitherer,
Bresolin, Kudritzki, Steidel
2004, ApJ, 615, 98
Ionizing flux of high-z starburst galaxies
ionization of IGM
Lyman continuum of high-z starbursts
fully synthetic spectra vs. observation
Haehnelt, Madau, Kudritzki, Steidel 2001, ApJ,
Rome 2005
Massive stars die as SN or GRB
Massive stars
form iron cores
during evolution
 core collapse
SN
GRB
Tracks by
Maeder & Meynet
(with and without
rotational mixing)
The Nearest Galaxies
LMC
February 22, 1987
SMC
SN 1987A
M74 red supergiant progenitor
Smartt et al., 2004,
Science 303, 499
Progenitor HRD
Smartt et al. 2004
SN2005cs in M51
Discovered by Wolfgang Kloehr in June 2005
German Amateur astronomer
20cm reflector + CCD
SN2005cs in M51
normal SN type II-P
SN2005cs in M51 - Hubble images
GRBs and massive stars
Chandra
GRB 980425 = SN1998bw
@ z=0.0085
HST
GRB 050904
@ z=6.29
•
4' position from Swift
•
Optical observations at
3h didn't see anything
•
Bright NIR afterglow
•
MAGNUM observations
at 12h
•
Flat spectrum over JHK,
no detection in RI
•
z=6.29 from Subaru
Rome 2005
Massive stars
Extremely luminous
 ideal as individual targets
to study
• chem. evolution
of galaxies
• distances
Tracks by
Maeder & Meynet
(with and without
rotational mixing)
Quantitative stellar spectroscopy of individual stars
Rome 2005
in astronomy
galaxies beyond the Local Group
Extragalactic stellar
Properties of stellar populations
Evolution of galaxies
Chemical abundance and abundance pattern gradients
Interstellar extinction
Distances
Dark matter content
Rome 2005
NGC 300
2 Mpc
Rome 2005
Cycle 11 HST/ACS imaging
blue supergiants
Bresolin et al. 2005
NRAO 2006
FORS/VLT spectra
Bresolin, Gieren,
Kudritzki et al. 2002
ApJ 567, 277
NGC 3621 @ 7Mpc
NRAO 2006
HST/ACS
0.2 & 0.5 solar
metallicity models
A0 Ia star
V = 20.5
NGC 3621 @ 7 Mpc
NGC 3621 FORS/VLT
FORS/VLT
@ 7 Mpc
multi-object spectroscopy
MV = -9
Bresolin, Kudritzki, Mendez, Przybilla
2001, ApJ Letters 548, L159
Rome 2005
Massive stars
O
I -V
B0-3
I
B4-A3
I
Tracks by
Maeder & Meynet
(with and without
rotational mixing)
Concepcion 2007
outline
 stellar atmospheres and diagnostic methods
 parameters and winds of hot massive stars
 the first stars
 population synthesis at high redshift
 IR spectroscopy of massive stars in the GC
 a new distance to M33 from eclipsing binaries
 the B supergiant companion to SN 1993J in M81
 eclipsing binaries, SN, LBVs, Miras in the local
universe and Pan-STARRS
 stellar abundances: from the Local Group to 7 Mpc
 new spectroscopic distance determination method
Concepcion 2007
2. Diagnostics of massive stars
• effects of stellar winds on spectra and SEDs
• effects of NLTE
• basic concept of hot star model atmospheres
Spectral diagnostics of massive stars
diagnostic problem:
high luminosity  enormous energy and momentum
density of radiation field
NLTE
stellar winds
 Model atmospheres and radiative transfer
• detailed NLTE treatment
• radiation-hydrodynamics of line-driven winds
• spherical extension
Concepcion 2007
UV spectrum of O4
supergiant z Puppis
Pauldrach, Puls, Kudritzki et al. 1994,
SSRev, 66, 105
P Cygni profiles and stellar winds
Wind in front of star
Scattered photons
from envelope
Total line profile
λ
P Cygni profiles and vinfinity
fit of v∞
± 5% accuracy
Kudritzki & Puls, 2000, AARA 38, 613
P Cygni profiles and mass-loss
Kudritzki & Puls, 2000, AARA 38, 613
P Cygni profiles and metallicity
Galaxy
LMC
SMC
Kudritzki, 1998
A-supergiant in M31 – stellar wind
McCarthy, Kudritzki,
Venn, Lennon,Puls
1997, ApJ 482, 757
Keck, Hires
Hα emission B superrgiant – stellar wind
Model calculation
Kudritzki et al. 1999,
A&A 350, 970
Hα emission O-star
Model calculation
Variation of
by ± 20%
M_
Kudritzki & Puls, 2000, AARA 38, 613
atmospheric velocity field
log vwind
M_
high
, vwind > vth
M_
low
, vwind < vth
log τ
Kudritzki 1998
atmospheric density structure
log ρ
M_
low
M_
high
log τ
Kudritzki 1998
FUV- and IR- excess through winds
winds
effects on
ionization!
Gabler, Gabler, Kudritzki, Puls,
Pauldrach, 1989, A&A 226, 162
Lyman continuum of B-stars
effects of winds
on ionization !!
Najarro, Kudritzki, Cassinelli,
Stahl, Hillier 1996, A&A 306, 892
Hα and
M_
Hγ and
M_
HeI 4471 and
M_
HeII 4542 and
M_
Concepcion 2007
X-ray emission of hot, massive stars
• all O- stars show X-ray emission
• LX/LBol ≈ 10-7, but large scatter
• hypothesis: hot shocks in stellar wind emit X-rays
• X-rays affect stellar wind ionization  OVI, SVI, NV
• wind models need to include X-rays
• study of X-ray emission (Kudritzki et al., 98)
ROSAT X-ray SEDS and radiative transfer model
randomly distributed shocks imbedded into winds
Concepcion 2007
time dependent stellar wind radiation-hydro  shocks
(Owocki et al., 1988; Feldmeier, 1997)
Concepcion 2007
X-ray emission of hot, massive stars
• all O- stars show X-ray emission
• LX/LBol ≈ 10-7, but large scatter
• hypothesis: hot shocks in stellar wind emit X-rays
• X-rays affect stellar wind ionization  OVI, SVI, NV
• wind models need to include X-rays
• study of X-ray emission (Kudritzki et al., 98)
ROSAT X-ray SEDS and radiative transfer model
randomly distributed shocks imbedded into winds
Concepcion 2007
Calculated spectra and ROSAT observations
Feldmeier, Kudritzki et al., 1997
ζ Pup, O4 If
ι Ori O9 III
15 Mon O7 V
theory
convolved with
ROSAT FWHM
● ROSAT
Concepcion 2007
X-ray Luminosity of O-stars
Correlated with log L
and cooling length
Kudritzki et al., 1998