Workshop on common metrics to calculate the CO2 equivalence of anthropogenic greenhouse gas emissions by sources and removals by sinks Radiative Forcing.
Download ReportTranscript Workshop on common metrics to calculate the CO2 equivalence of anthropogenic greenhouse gas emissions by sources and removals by sinks Radiative Forcing.
Workshop on common metrics to calculate the CO2 equivalence of anthropogenic greenhouse gas emissions by sources and removals by sinks Radiative Forcing and Global Warming Potentials due to CH4 and N2O Hua Zhang Ruoyu Zhang National Climate Center China Meteorological Administration April 3-4, 2012 Bonn, Germany 1 Backgrounds 2 Data & Methods 3 Radiative forcings 4 GWPs & GTPs 5 Discussion CH (pptv) C0 (pptv) N 24(ppmv) 20 Concentrations of main GHGs before 2005 10000 5000 year(before 2005) 0 Concentrations of main GHGs under SRES scenarios 气候变化的一种机制 通过辐射传输过程 TH RF of GHG x GWPx RF of CO2 TH RF (t )dt a [ x(t )]dt x RF (t )dt r 0 x 0 TH Timedecaying functions 0 TH a [r (t )]dt r 0 Radiative efficiency 1 GWP is related to emission process of GHG; 2 GWP can convert any kind of GHG equivalently to CO2 emission, which makes the comparison easily among different gases; 3 GWP denotes the cumulative climate effect of the GHG during a period of time. T changes with time dT (t ) T (t ) C F (t ) dt TH x GTP T arrives at balance not varying T T TH x TH r Surface temperature changes T F 1 GTP refers to emission process of GHGs too ; 2 GTP can convert any kind of GHGs equivalently to CO2 emission too; 3 GTP denotes the effect of GHG on the temperature changes of the earth-atmosphere system. Radiative Transfer Model (Zhang et al., 2003; 2006a,b) • 998-band longwave radiative transfer scheme (high resolution) • 10~49000cm-1 (0.2~1000µm) is divided into 998 bands • longwave region 10~2500cm-1(4~1000µm) is 498 bands with intervals of 5cm-1 Gas molecular spectrum data 辐射传输模式 辐射传输模式 HITRAN2004 Atmosphere profiles data 6 kinds of typical model atmosphere : TRO、MLS、MLW、SAS、SAW、USS Clouds ISCCP D2 products Temperature profile T0(L) Radiative Transfer Model (Zhang et al.,2006) kn=0 Radiative Transfer Model (Zhang et al.,2006) Heating rate for zero concentration: htr0(L) Heating rate for 0.1 ppbv concentration: htr1(L) Criterion: to kn=0 Heating rate judge whether Instantaneous the Htrdif(L)=htr1(L) - htr0(L) system reaches RF to balance htrdif(L)<ξ Y Adjusted RF N iteration kn=kn+1 Tnew(L)=Told(L)+htrdif(L)×△t L:from Tropopause to TOA Doubled CO2 , H2O increase by 20% Doubled CO2 Model layer 998band AOGCMs LBL 998-band AOGCMs LBL TOM 3.03 2.45 2.8 3.26 3.75 3.78 200 hPa 5.6 5.07 5.48 4.13 4.45 4.57 Surface 1.7 1.12 1.64 11.14 11.95 11.52 (1)CO2 concentration is doubled from 287 ppmv to 574 ppmv; (2)With doubled CO2 concentration (574 ppmv), H2O content is increased by 20% of its concentration of 1860 year Radiative efficiency Clear sky Cloudy sky Gas IPCC 2007 IRE ARE ARE ARE after lifetimeadjustment ARE CO2 1.99E-5 1.88E-5 1.64E-5 1.57E-5, +11.9% 1.4E-5 CH4 5.13E-4 5.06E-4 4.14E-4 3.73E-4, +0.8% 3.7E-4 N 2O 3.87E-3 3.79E-3 3.13E-3 2.98E-3, -1.4% 3.03E-3 * unit:W·m-2·ppbv-1 ** Lifetime : CO2 : 120a ; CH4 : 12a ; N2O : 114a Radiative forcings (ARF) 2005 Gas 2010 before After Before adjustment adjustment adjustment IPCC After adjustment 2007 CO2 1.89 1.81 2.04 1.95 1.66±0.17 CH4 0.581 0.523 0.583 0.525 0.48±0.05 N 2O 0.185 0.177 0.187 0.179 0.16±0.02 * unit:W·m-2 ** Lifetime : CO2 : 120a ; CH4 : 12a ; N2O : 114a Climate sensitivity parameter : λ Its typical value is chosen as 0.5K·(W·m-2)-1 Original concentration of CO2 : 385.2 ppmv Then: T F IPCC : 1.5~4.5K Concentration ARF / W m-2 Temperature Changes / K CO2×1.5 2.8 1.4 CO2×2.0 4.8 2.4 CO2×2.5 6.4 3.2 CO2×3.0 7.8 3.9 CO2×3.5 9.0 4.5 CO2×4.0 9.8 4.9 ARF fitting formula ARFCO2 ln( C / C0 ) ( C C0 ) C : CO2 concentration; C0 : background CO2 concentration, C0 = 385.2 ppmv; fitting parameters : α=6.2554, β=5.2783×10-2 6种大气廓线下 ARF fitting formula ARFCH 4 ( M M 0 ) (M M 0 ) N ( M M 0 ) N (M M 0 ) CH4 background concentration M0=1797ppbv; 0≤M0,N0≤10000 ppbv ; fitting parameters : α=0.03195, β=1.439×10-4, γ=-1.133×10-3, δ=1.221×10-7 ARFN 2O ( N N 0 ) ( N N 0 ) M ( N N 0 ) M ( N N 0 ) N2O background concentration N0=321.8ppbv 0≤M0,N0≤10000 ppbv; fitting parameters : α=0.08801, β=0.0011 γ=-3.7167×10-4, δ= 2.0116×10-9 Test of fitting Test issue Model results / W m-2 Formula results / W m-2 Absolute error / W m-2 CO2×2 + CH4×2 + N2O×2 6.07 6.05 0.02 CO2×2 + CH4×1 + N2O×1 4.70 4.76 0.06 CO2×2 + CH4×2 + N2O×1 5.36 5.30 0.06 CO2×1 + CH4×2 + N2O×2 1.32 1.29 0.03 * Shi et al., absolute error≤0.05 W m-2 before atmospheric lifetime adjustment Gas CH4 GWP GWP IPCC 2007 GTPP GTPS 20 / 100 / 500 20 / 100 / 500 20 / 100 / 500 20 / 100 / 500 50 / 17 / 5.3 72 / 25 / 7.6 41 / 0.26 / ~0 56 / 19 / 5.4 289 / 298 / 153 268 / 233 / 11 250 / 269 / 139 N2O 258 / 265.7 / 137 after atmospheric lifetime adjustment GWP GWP IPCC 2007 GTPP GTPS 20 / 100 / 500 20 / 100 / 500 20 / 100 / 500 20 / 100 / 500 CH4 47 / 16 / 5 72 / 25 / 7.6 39 / 0.24 / ~0 53 / 18 / 5 N 2O 257 / 266 / 136 289 / 298 / 153 268 / 233 / 11 250 / 268 / 138 气体 For comparison : Shine(2005)results Analytical calculation Gas EBM GTPP GTPS GTPP GTPS 20 / 100 / 500 20 / 100 / 500 20 / 100 / 500 20 / 100 / 500 CH4 52 / 0.35 / 0 69 / 24 / 7 46 / 5 / 0.8 66 / 25 / 8 N 2O 290 / 270 / 13 260 / 290 / 160 290 / 270 / 35 270 / 290 / 160 After the lifetime-adjustment Gas Atmosphere lifetime /a AGWP / 10-14·W·m-2·kg-1 CO2 120 2.72 / 9.57 / 31.5 CH4 12 127.7 / 157.3 / 157.4 N2O 114 700.3 / 2542 / 4298 HFC-32 4.9 6613 / 6727 / 6727 HFC-125 29 19971 / 38808 / 40083 HFC-134 10 12962 / 14990 / 14991 HFC-134a 14 12320 / 16191 / 16204 HFC-143a 52 24107 / 64468 / 75499 HFC-152a 1.4 1573 / 1573 / 1573 C2F6 10000 28168 / 140277 / 68757 CF4 50000 12527 / 62553 / 311520 SF6 3200 52193 / 257734 / 1211774 20 / 100 / 500 Before atmospheric lifetime adjustment AGTPP / 10-16·K·kg-1 AGTPS / 10-14·K·kg-1 20 / 100 / 500 20 / 100 / 500 CH4 372 / 1.62 / ~0 73.8 / 139.5 / 139.7 N 2O 2419 / 1465 / 43.9 328.9 / 1972 / 3593 CO2 9.04 / 6.28 / 3.89 1.31 / 7.34 / 25.9 Gas After atmospheric lifetime adjustment AGTPP / 10-16·K·kg-1 AGTPS / 10-14·K·kg-1 20 / 100 / 500 20 / 100 / 500 CH4 336 / 1.46 / ~0 66.5 / 125.7 / 125.9 N 2O 2312 / 1401 / 41.9 314 / 1884 / 3434 CO2 8.64 / 6.01 / 3.72 1.26 / 7.02 / 24.8 Gas AGTPP / 10-16·K·kg-1 AGTPS / 10-14·K·kg-1 20 / 100 / 500 20 / 100 / 500 HFC-32 16834 / 10.2 / ~0 5209 / 7118 / 7119 HFC-125 80622 / 7321 / 0.008 12550 / 40266 / 42393 HFC-134 35691 / 59.9 / ~0 8093 / 14012 / 14021 HFC-134a 44445 / 361 / ~0 8322 / 17108 / 17160 HFC-143a 46423 / 12837 / 5.9 13945 / 62032 / 75986 HFC-152a 2755 / 1.5 / ~0 1376 / 1669 / 1669 C2F6 124990 / 146336 / 140610 16213 / 131366 / 705206 CF4 51547 / 60720 / 60241 6683 / 143168 / 296248 SF6 233196 / 268627 / 237083 30283 / 243422 / 1253570 Gas AGTPP of CH4 & N2O Temperature Change (10-13K) 400 300 200 N2O N2O ( life-adjusted ) CH4 100 CH4 ( life-adjusted ) 0 AGTPS of CH4 & N2O 0 100 200 300 Time (a) 400 500 10 AGTPP adjustedAGTPP 9 8 7 6 28 5 4 3 0 100 200 300 年份/a Time (a) AGTPS of CO2 400 500 -14K) (10 Temperature 14 温度 changes /10 K -16 (10 changes Temperature 温度 /10-16 K K) AGTPP of CO2 AGTPS adjustedAGTPS 24 20 16 12 8 4 0 0 100 200 300 年份/a Time (a) 400 500 The lifetimes of CH4 are relatively short-lived GHGs; GWP greatly over-estimates the effects of their pulse emission on climate changes. GTPp is an optimal metric for assessing the long-term effects of CH4 emissions on global climate change, by considering practical emissions of these gases. • Climate sensitivity parameter λ can affect AGWP and AGTP greatly, this should be considered as a large uncertainty in estimating process. • AGWPs and AGTPs of long-lived GHGs are sensitive to time horizon; while AGTPp of short-lived GHGs is sensitive to time horizon greatly. • Clouds is another large factor of uncertainties in estimating GWP or GTP and should be clarified in IPCC AR5 report. Thanks!