10.1 – Exponents Notation that represents repeated multiplication of the same factor. n a ; where a is the base (or factor) and n.
Download ReportTranscript 10.1 – Exponents Notation that represents repeated multiplication of the same factor. n a ; where a is the base (or factor) and n.
10.1 – Exponents Notation that represents repeated multiplication of the same factor. n a ; where a is the base (or factor) and n is the exponent. Examples: 4 444 3 12 12 12 12 12 12 5 r r r r r r r r 7 42 4 4 16 4 2 42 4 4 16 4 4 16 10.1 – Exponents Product Rule for Exponents If m and n are positive integers and a is a real number, then a m a n a mn Examples: 43 45 4 4 4 4 4 4 4 4 435 48 7 7 7 7 7 7 7 7 3 2 98 96 914 s s s s 6 2 3 3 2 5 7 33 37 39 319 11 m m m 7 8 10.1 – Exponents Power Rule for Exponents If m and n are positive integers and a is a real number, then a m n a mn Examples: 8 3 3 3 3 3 2 2 3 2 4 z 6 3 2 3 z 2 8 3 9 18 z y 2 4 63 4 10 8 2 9 y 410 82 40 9 y 16 10.1 – Exponents Power of a Product Rule If m, n, and r are positive integers and a and b are real numbers, then r a b mr a b m n n r Examples: 3 27x 3x 3 x 3 3 4y 2 4 3 4 y 14 2 p q r 4 3 2 2 3 24 4 y 256 y 4 2 p qr 12 8 6 3 13 43 8 23 13 p q r 8 p q r 12 6 3 10.1 – Exponents Power of a Quotient Rule If m, n, and r are positive integers and a and c are real numbers (c does not equal zero), then r a a mr n nr c c m Examples: 4 2x 214 x 44 14 14 3 y 3y 4 2 5x 512 x 62 3 12 32 9 y 9y 6 24 x16 4 4 3 y 52 x12 2 6 9 y 16 x16 81y 4 25 x12 6 81 y 10.1 – Exponents Quotient Rule for Exponents If m and n are positive integers and a is a real number and a cannot equal 0, then m Examples: a mn a n a x5 x x x x x xxxxx 2 x x x 3 x xxx xxx x5 53 2 x x 3 x 10.1 – Exponents Quotient Rule for Exponents Examples: 59 3 96 5 5 6 5 7 7 3 4 y y y 3 y 2 10 2 14 2 14 10 2 16 4 7a 4b11 4 1 111 3 10 7a b 7a b ab 10.1 – Exponents What is the Rule? y8 8 8 0 y y 1 8 y 64 0 44 6 1 6 4 6 ky y y 0 k k 1 y k 5x 9 9 5x 9 5x 9 5x 1 0 Zero Exponent a 1, as long as a 0. 0 10.2 – Negative Exponents Problem: 1 1 x3 xxx xxx 2 x x x x5 x x x x x xxxxx x3 3 5 2 x x 5 x x 2 1 2 x If a is a real number other than 0 and n is an integer, then a n 1 n a 10.2 – Negative Exponents Examples: 1 5 3 5 3 7k 4 7 4 k x 8 3 1 8 x 4 1 3 4 1 81 31 51 1 1 3 5 5 3 5 3 3 5 5 3 15 15 8 15 1 1 10.2 – Negative Exponents If a is a real number other than 0 and n is an integer, then 1 1 n n a n and a n a a Examples: 1 4 x x0 4 0 4 x x 4 x x 16 7 x x 6 x 10.2 – Negative Exponents a n 1 n a and Examples: y 5 56 11 y y 6 y 9 r 2 z z2 9 r 2 2 6 6 2 7 7 49 7 2 36 6 2 1 n a n a 10.2 – Negative Exponents Practice Problems x 5 3 x 4 x 10 y y 5 4 y 10 y 5 4 x15 x 4 x 10 10 y y 10 20 30 y y 20 20 y y 1 y 2 x16 12 16 4 x x 4 x 10 y 5 4 1 1 10 20 30 y y y y2 y2 9x 92 x 6 2 6 6 2 9 x 81x y y 3 10.2 – Negative Exponents Practice Problems a 4 7 5 b a 4 5 7 5 b 20 35 a b 20 a 35 b 8 6 4x 32 x y 35 62 8 4 4x y 4x y 4 5 2 y 8x y 3 3 6 3 5 2 8 32 x y 4x x y 4x 4 5 2 6 8x y y y 10.2 – Negative Exponents Scientific Notation A number is written in scientific notation if it is a product of a number a, where 10 a 10 and an integer power r of 10. a 10r Examples: 2 1.65 10 165 8 3.67 10 367, 000, 000 4 1.7 10 0.00017 3 5.97 10 0.00597 10.2 – Negative Exponents Scientific Notation Examples: 2.75 10 27,500 4 9.621 106 0.000009621 5.42 103 5, 420 7.35 10 11 0.0000000000735 10.3 – Polynomials Definitions Term: a number or a product of a number and variables raised to a power. 3, 5x 2 , 2 x, 9 x 2 y Coefficient: the numerical factor of each term. 5x 2 , 2 x, 9 x 2 y Constant: the term without a variable. 3, 6, 5, 32 Polynomial: a finite sum of terms of the form axn, where a is a real number and n is a whole number. 15 x3 2 x 2 5 21y 6 7 y 5 2 y 3 6 y 10.3 – Polynomials Definitions Monomial: a polynomial with exactly one term. 2 ax , rt , 4 2x , 9m, 2 9x y Binomial: a polynomial with exactly two terms. x 8, r 3, 5 x 2 2 x, 2 x 9 x 2 y Trinomial: a polynomial with exactly three terms. x 2 x 8, r 5 3r 3, 5 x 2 2 x 7 10.3 – Polynomials Definitions The Degree of a Term with one variable is the exponent on the variable. 5x 2 2, 2x 4 4, 9m 1 The Degree of a Term with more than one variable is the sum of the exponents on the variables. 7x y 3, 2 2x y 6, 4 2 9mn z 10 5 4 The Degree of a Polynomial is the greatest degree of the terms of the polynomial variables. 2 x 3 x 7 3, 3 2 x y 5x y 6 x 6 4 2 2 3 10.3 – Polynomials Practice Problems Identify the degrees of each term and the degree of the polynomial. 3a b 2ab 9b 4 3 0 6 6 6 5x 4 x 5x 2 1 3 3 2 4 2 3 4 x5 y 4 5x 4 y5 6 x3 y 3 2 xy 9 9 6 9 2 5 3 10.3 – Polynomials Combining Like Terms - Practice Problems Simplify each polynomial. 14 y 3 10 y 94 2 2 4 y 2 91 23x 2 6 x x 15 23x 2 7x 15 10.3 – Polynomials Practice Problems Simplify each polynomial. 2 3 1 1 3 3 x x2 x x 7 4 2 8 2 3 1 3 1 3 x x x x2 7 2 4 8 2 2 3 7 1 3 2 1 3 x x x x2 2 7 7 2 2 4 8 4 3 7 3 2 3 3 3 1 x x x x2 x x2 14 14 8 8 14 8 10.3 – Polynomials Practice Problems Evaluate each polynomial for the given value. 3 y 2 10 for y 1 3 1 10 2 6 x 2 11x 20 3 1 10 3 10 7 for x 3 6 3 11 3 20 6 9 33 20 2 54 33 20 87 20 67