More Applications of the Pumping Lemma Fall 2006 Costas Busch - RPI The Pumping Lemma: • Given a infinite regular language • there exists an integer •
Download
Report
Transcript More Applications of the Pumping Lemma Fall 2006 Costas Busch - RPI The Pumping Lemma: • Given a infinite regular language • there exists an integer •
More Applications
of
the Pumping Lemma
Fall 2006
Costas Busch - RPI
1
The Pumping Lemma:
• Given a infinite regular language
• there exists an integer
• for any string
• we can write
• with
m (critical length)
w L with length | w | m
w x y z
| x y | m and | y | 1
• such that:
Fall 2006
L
xy z L
i
Costas Busch - RPI
i 0, 1, 2, ...
2
Non-regular languages
L {vv : v *}
R
Regular languages
Fall 2006
Costas Busch - RPI
3
Theorem: The language
L {vv : v *}
R
{a, b}
is not regular
Proof:
Fall 2006
Use the Pumping Lemma
Costas Busch - RPI
4
L {vv : v *}
R
Assume for contradiction
that L is a regular language
Since L is infinite
we can apply the Pumping Lemma
Fall 2006
Costas Busch - RPI
5
L {vv : v *}
R
Let
m be the critical length for L
Pick a string
w such that: w L
and length
We pick
Fall 2006
| w| m
wa b b a
m m m m
Costas Busch - RPI
6
From the Pumping Lemma:
we can write: w a b b a
m
with lengths:
m
m
m
x y z
| x y | m, | y | 1
m
m m m
w xyz a...aa...a...ab...bb...ba...a
x
Thus:
Fall 2006
y
z
y a , 1k m
k
Costas Busch - RPI
7
x y za b b a
m m m m
y a , 1k m
k
From the Pumping Lemma:
xy z L
i
i 0, 1, 2, ...
Thus:
Fall 2006
xy z L
2
Costas Busch - RPI
8
x y za b b a
m m m m
y a , 1k m
k
From the Pumping Lemma:
xy z L
2
m m m
m+k
2
xy z = a...aa...aa...a...ab...bb...ba...a ∈L
x
Thus:
Fall 2006
y
a
y
z
m k m m m
b b a
Costas Busch - RPI
L
9
a
BUT:
m k m m m
b b a
L
k 1
L {vv : v *}
R
a
m k m m m
b b a
L
CONTRADICTION!!!
Fall 2006
Costas Busch - RPI
10
Therefore:
Our assumption that L
is a regular language is not true
Conclusion: L is not a regular language
END OF PROOF
Fall 2006
Costas Busch - RPI
11
Non-regular languages
n l n l
L {a b c
: n, l 0}
Regular languages
Fall 2006
Costas Busch - RPI
12
Theorem: The language
n l n l
L {a b c
: n, l 0}
is not regular
Proof:
Fall 2006
Use the Pumping Lemma
Costas Busch - RPI
13
n l n l
L {a b c
: n, l 0}
Assume for contradiction
that L is a regular language
Since L is infinite
we can apply the Pumping Lemma
Fall 2006
Costas Busch - RPI
14
n l n l
L {a b c
Let
: n, l 0}
m be the critical length of L
Pick a string
w such that: w L
length
We pick
Fall 2006
and
| w| m
wa b c
m m 2m
Costas Busch - RPI
15
From the Pumping Lemma:
We can write
w a b c
With lengths
| x y | m, | y | 1
m
m 2m
m
x y z
m
2m
w xyz a...aa...aa...ab...bc...cc...c
x
Thus:
Fall 2006
y
z
y a , 1k m
k
Costas Busch - RPI
16
x y za b c
m m 2m
y a , 1k m
k
From the Pumping Lemma:
xy z L
i
i 0, 1, 2, ...
Thus:
Fall 2006
0
x y z = xz ∈ L
Costas Busch - RPI
17
x y za b c
m m 2m
y a , 1k m
k
xz L
From the Pumping Lemma:
mk
m
2m
xz a...aa...ab...bc...cc...c L
x
Thus:
Fall 2006
z
a
mk m 2m
b c
Costas Busch - RPI
L
18
a
BUT:
mk m 2m
n l n l
L {a b c
a
L
b c
k 1
: n, l 0}
mk m 2m
b c
L
CONTRADICTION!!!
Fall 2006
Costas Busch - RPI
19
Therefore:
Our assumption that L
is a regular language is not true
Conclusion: L is not a regular language
END OF PROOF
Fall 2006
Costas Busch - RPI
20
Non-regular languages
L {a : n 0}
n!
Regular languages
Fall 2006
Costas Busch - RPI
21
Theorem: The language
L {a : n 0}
n!
is not regular
n! 1 2 (n 1) n
Proof:
Fall 2006
Use the Pumping Lemma
Costas Busch - RPI
22
L {a : n 0}
n!
Assume for contradiction
that L is a regular language
Since L is infinite
we can apply the Pumping Lemma
Fall 2006
Costas Busch - RPI
23
L {a : n 0}
n!
Let
m be the critical length of
Pick a string
L
w such that: w L
length
We pick
Fall 2006
wa
Costas Busch - RPI
| w| m
m!
24
From the Pumping Lemma:
We can write
w a
With lengths
| x y | m, | y | 1
m!
x y z
m
w xyz a
m!
a...aa...aa...aa...aa...a
x
Thus:
Fall 2006
m!m
y
z
y a , 1 k m
k
Costas Busch - RPI
25
x y za
y a , 1 k m
m!
k
From the Pumping Lemma:
xy z L
i
i 0, 1, 2, ...
Thus:
Fall 2006
xy z L
2
Costas Busch - RPI
26
x y za
y a , 1 k m
m!
k
xy z L
2
From the Pumping Lemma:
m!m
mk
xy z a...aa...aa...aa...aa...aa...a L
2
x
Thus:
Fall 2006
y
y
a
m! k
z
L
Costas Busch - RPI
27
a
Since:
m! k
L
1 k m
L {a : n 0}
n!
There must exist
p such that:
m! k p!
Fall 2006
Costas Busch - RPI
28
However:
m! k m! m
m! m!
for
m 1
m!m m!
m!(m 1)
(m 1)!
m! k (m 1)!
m! k p!
Fall 2006
Costas Busch - RPI
for any
p
29
a
BUT:
m! k
L
1 k m
L {a : n 0}
n!
a
m! k
L
CONTRADICTION!!!
Fall 2006
Costas Busch - RPI
30
Therefore:
Our assumption that L
is a regular language is not true
Conclusion: L is not a regular language
END OF PROOF
Fall 2006
Costas Busch - RPI
31