Physics Prospects with the JLab 12 GeV Upgrade Gluonic Excitations 3-dim view of the Nucleon Elton S.

Download Report

Transcript Physics Prospects with the JLab 12 GeV Upgrade Gluonic Excitations 3-dim view of the Nucleon Elton S.

Physics Prospects with the
JLab 12 GeV Upgrade
Gluonic Excitations
3-dim view
of the Nucleon
Elton S. Smith
Jefferson Lab
PANIC02
Osaka
Valence Structure
of the Nucleon
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
1
CEBAF @ JLab Today
 Main physics programs
─
─
─
─
nucleon electromagnetic form factors (including strange form factors)
N → N* electromagnetic transition form factors
spin structure functions of the nucleon
form factors and structure of light nuclei
 Superconducting recirculating electron accelerator
─ max. energy
─ max current
─ e polarization
5.7 GeV
200 mA
80%
 Simultaneous operation in 3 halls
L[cm-2s-1]
─ 2 High Resolution Spectrometers (pmax=4 GeV/c)
1039
─ 2 spectrometers (pmax=7 and 1.8 GeV/c) + special equipment
1039
─ Large Acceptance Spectrometer for e and g induced reactions
1034
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
2
add Hall D
(and beam line)
126 GeV CEBAF
Upgrade magnets
and power
supplies
CHL-2
Enhance equipment in
existing halls
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
3
Gluonic Excitations
Dynamical role of Glue
Confinement
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
4
Lattice QCD
Flux tubes realized
Flux
tube
forms
between
qq
→ Flux Tube Model
Confinement arises from
flux tubes and their
excitation leads to a new
spectrum of mesons
From G. Bali
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
5
Understanding Confinement
The Ideal Experiment
The Real Experiment
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
6
Hybrid Mesons
Hybrid mesons
1 GeV mass difference (p/r)
Normal mesons
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
7
Normal Mesons – qq color singlet bound states
Spin/angular momentum configurations & radial excitations generate
our known spectrum of light quark mesons.
Starting with u - d - s we expect to find mesons grouped in nonets - each
characterized by a given J, P and C.
JPC = 0– + 0++ 1– – 1+ – 2++ …
JPC
= 0– – 0+ – 1– + 2+ – …
Allowed combinations
Not-allowed: exotic
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
8
Quantum Numbers of Hybrid Mesons

Quarks
S0
L 0
Excited
Flux Tube


1
PC
J    

1

J
PC
J PC  0
like
Hybrid Meson

1
   

1
p, K
Exotic
S 1
L 0
J P C  1 
like


1

PC
J    

1




0
1
2

PC
J     

0 1 2
g, 
Flux tube excitation (and parallel quark spins) lead to exotic JPC
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
9
Radial
excitations
Mass (GeV)
Meson Map
Each box corresponds
to 4 nonets (2 for L=0)
qq Mesons
2.5
Glueballs
2.0
1.5
2 +–
2 –+
1 ––
1– +
1 +–
1 ++
0 +–
0 –+
0 ++
1.0
L=0
1
2
3
4
Hybrids
2 –+
0 –+
2 ++
exotic
nonets
Lattice
1-+ 1.9 GeV
2+- 2.1 GeV
0+- 2.3 GeV
(L = qq angular momentum)
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
10
Exotic Signal JPC=1─ +
E852 p1(1600) → h p
↳ hpp
↳ gg
M =1.60  0.05
G = 0.34  0.06
PRL 86, 3977 (2001)
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
11
Families of Exotics
p1
1-+ nonet
IG(JPC)=1-(1-+)
K1 IG(JPC)=
h1 IG(JPC)=0+(1-+)
g
N
X
e
½ (1-)
h’1 IG(JPC)=0+(1-+)
Couple to V.M + e
p1  p
N
h1  b1 , 
g ,,
h’1  
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
12
Strategy for Exotic Meson Search
 Use photons to produce meson final states
─ tagged photon beam with 8 – 9 GeV
─ linear polarization to constrain production mechanism
 Use large acceptance detector
─ hermetic coverage for charged and neutral particles
f1hKKhKKppp
b1pppppp
─ typical hadronic final states:
pppp
─ high data acquisition rate
 Perform partial-wave analysis
─ identify quantum numbers as a function of mass
─ check consistency of results in different decay modes
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
13
Coherent Bremsstrahlung
This technique
provides requisite
energy, flux and
polarization
flux
12 GeV electrons
Incoherent &
coherent spectrum
40%
polarization
in peak
photons out
collimated
electrons in
spectrometer
diamond
crystal
tagged
with 0.1% resolution
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
Eg (GeV)
14
GlueX / Hall D Detector
Barrel Lead Glass
Calorimeter Detector
Solenoid
herent Bremsstrahlung
Photon Beam
Time of
Tracking Flight
Cerenkov
Counter
Target
Note that tagger is
80 m upstream of
detector
Electron Beam from CEBAF
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
15
Finding an Exotic Wave
An exotic wave (JPC = 1-+) was generated at level of 2.5 % with 7 other
waves. Events were smeared, accepted, passed to PWA fitter.
X(exotic )  p  3p
Mass
5 00
500
events/20 MeV
generated
4 00
400
Input: 1600 MeV
Output: 1598 +/- 3 MeV
PWA fit
3 00
300
Width
2 00
200
Input: 170 MeV
Output: 173 +/- 11 MeV
1 00
100
Statistics shown here correspond
to a few days of running.
Double-blind M. C. exercise
Elton S. Smith
00
1 .2
1.2
1 .4
1.4
11.6
.6
11.8
.8
Mass (3 pions) (GeV)
PaNic02, Sep 30 – Oct 4, 2002
16
3-dimensional view
of the Nucleon
Deep Exclusive Scattering
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
18
Generalized Parton Distributions
• GPD’s provide access to fundamental quantities such as the quark
orbital angular momentum that have not been accessible
Jquark 
1
q


L
2

1
2
1






dx x H q ( x,,t  0)  E q( x,,t  0)
1
• and the GPD’s unify the description of inclusive and exclusive
processes, connecting directly to the “normal” parton distributions:
1
GE (t )   dx
1
q





H q(x,,t ) 
Elton S. Smith
t E q( x,,t ) (for example),

4M 2

PaNic02, Sep 30 – Oct 4, 2002
19
GPDs Contain Much More Information than DIS
DIS only measures
a cut at =0
Quark distribution q(x)
Antiquark distribution q(x)
qq distribution
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
21
Measuring the GPD’s
 Key experimental capabilities include:
─CW (100% duty factor) electron beams
(permits fully exclusive reactions)
─modern detectors
(permit exclusive reactions at high luminosity)
─adequate energy
(~10 GeV to access the valence quark regime)
Measurements of the GPD’s are now
feasible
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
22
Interpretation of the GPD’s
Analogy with form factors
r  3 iqrrr  r
F (q )  d re
(r )
Charge ↔ Form Factor
r
mi ri
r

r measured relative to Rcm 
M
iq
2

H ( x, q^ )  d b^ e
b^ measured
where
^ b^
f ( x, b^ )
Parton Distribution ↔ GPD’s
@  0
relative to R^CM   xi ri ^
f ( x, b^ ) is a parton density of quarks with
momentum fraction x at a ^ distance b^ from R^CM
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
Ref. Burkardt
23
3-dim picture
from Belitsky and Mueller
Elastic Scattering
Deep Inelastic
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
Deep Exclusive
24
Meson Production as a Filter
 Use quantum numbers of
meson to select appropriate
combinations of parton
distributions in nucleon.
g*
Pseudo-scalars (polarized)
p0: uv - ½ dv
h: uv - ½ dv + 2sv
p
Y(z)GiY(y)
p
Elton S. Smith
Vector Mesons (unpolarized)
L0: u + u + ½ (d + d); g
L0: u + u - ½ (d + d); g
L0: s + s; g
PaNic02, Sep 30 – Oct 4, 2002
25
Program to determine GPD’s
0
2
2




ep
ep
H ,E
↳ p p 
en p

e pg
r 
ep
ep g
r 
ep
en p
~
2 ~2

 H , E
~
2 ~2

 H , E , H , E
~
~

 H , E , H , E
~
~

 H * E
2

2
Other Channels
r
e p 
eN (h,p)
Elton S. Smith
e p
PaNic02, Sep 30 – Oct 4, 2002
e N
e (L,) K
26
Deep Virtual Compton Scattering:
A Window on Quark Correlations
DIS is limited by the fact that it can only measure longitudinal
distributions averaged over all quarks in the nucleon
 DIS corresponds exactly to
the imaginary part of the
Deep Compton Scattering
amplitude
 Add determination of the
final state (by exclusive
reactions such as DVCS)
and we can (finally!) probe
nucleon quark structure
and correlations at the
amplitude level
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
27
DVCS Single-Spin Asymmetry
CLAS
Q2 = 5.4
Collaboration
GeV2
PRL
x = 0.35
87, 182002 (2001)
-t = 0.3 GeV2
Measure interference
between DVCS-BH
CLAS experiment
e’
E0 = 11 GeV
g
P
=
80%
e e
L = 1035 cm-2s-1
Run time: 2000 hrs
p
GPD’s
p
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
28
Hard Meson Electroproduction (o)
 Physics issue: map out
GPD’s (need to isolate
s L)
e’

e
p
GPD’s
sL ~ Q -6
p
 Technique: determine
sL from  →pp decay
angle distribution
 CLAS at 11 GeV
sT ~ Q -8
400 hrs at L = 1035 cm-2s-1
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
29
Valence Quark Structure
of the Nucleon
Parton Distributions at large x
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
30
Enhanced Access to the DIS Regime
 12 GeV will access
the valence quark
regime for x > 0.3
 where constituent
quark properties are
not masked by the
sea quarks
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
31
Predictions for large xBj
Proton Wavefunction (Spin and Flavor Symmetric)
p
1

u
2

1
d
3
(ud ) S 0
(uu ) S 1
1

u
18

(ud ) S 1
1
 u  (ud ) S 1
3
2
d  (uu ) S 1
3
F2n/F2p
d/u
A1n
A1p
SU(6)
2/3
1/2
0
5/9
Valence Quark
1/4
0
1
1
pQCD
3/7
1/5
1
1
Nucleon Model
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
32
Valence Quark Distribution
 Physics issue:
─ compare behavior of u
and d quarks as xBj → 1
SU(6)
 Experimental problem:
─ extract information from
Valence Quark
comparison of hydrogen
and deuterium data
─ need to correct for
nuclear effects in D
pQCD
 Solution for CEBAF
upgrade:
─ compare DIS off 3He
and 3H (nuclear effects
~ same)
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
33
The Neutron Spin Asymmetry A1n
 Study of spin structure
functions has been
limited to the low-x
region
 JLab at 12 GeV with its
high luminosity is a prime
facility for measurements
at large x
Elton S. Smith
Jlab E99-117 (3He)
preliminary
PaNic02, Sep 30 – Oct 4, 2002
34
Flavor Decomposition: (e,e’p+)/(e,e’p-)
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
35
12 GeV Upgrade Project Status
 Developed by CEBAF User Community in collaboration with
JLab
 Nuclear Science Advisory Committee, NSAC
─ plan presented during last 5-year Long Range Plan
─ recommended by NSAC for new construction
 Plan presented to Department of Energy
─ presently waiting for CD-0 (determination of ‘mission need’)
 Detailed report is being prepared to be reviewed by Jlab
PAC in January
 Construction
─ construction start expected in FY2007 (October 2006)
─ 3 year construction project
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
36
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
37
CLAS++ Detector
Forward Cerenkov
Forward EC
Forward DC
Inner Cerenkov
Central Detector
Preshower EC
Forward TOF
Torus Cold Ring
Inner Calorimeter
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
38
SHMS - HMS Spectrometers After Upgrade
Max. Central Momentum 11 GeV/c
Min. Scattering Angle
5.5 deg
Momentum Resolution
.15% -.2%
Solid Angle
2.1 msr
Momentum Acceptance 20%
Target Length Acceptance
Opening Angle with HMS 25 deg
Configuration
QQ(DQ)
Bend Angle
18.4 deg
9 GeV/c
10 deg
4.4 msr
40%
50 cm
16 deg
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
39
Physics Program at 12 GeV
Gluonic Excitations
Exciting
Compelling
Valence Structure
of the Nucleon
In view of recent progress
in lattice calculations
3-dim view
of the Nucleon
Timely
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
40
Electron-Light Ion Collider Layout
Ion Source
Snake
IR
Snake
Solenoids
IR
5 GeV electrons
100 GeV light ions
Injector
5 GeV CEBAF with Energy Recovery
Beam Dump
100 MV cryomodules
Luminosity = 1035cm-2s-1
Elton S. Smith
PaNic02, Sep 30 – Oct 4, 2002
Lia Merminga
41