2010 IEEE Device Research Conference, June 21-23, Notre Dame, Indiana III-V FET Channel Designs for High Current Densities and Thin Inversion Layers Mark Rodwell University.
Download ReportTranscript 2010 IEEE Device Research Conference, June 21-23, Notre Dame, Indiana III-V FET Channel Designs for High Current Densities and Thin Inversion Layers Mark Rodwell University.
2010 IEEE Device Research Conference, June 21-23, Notre Dame, Indiana III-V FET Channel Designs for High Current Densities and Thin Inversion Layers Mark Rodwell University of California, Santa Barbara Coauthors: W. Frensley: University of Texas, Dallas S. Steiger, S. Lee, Y. Tan, G. Hegde, G. Klimek Network for Computational Nanotechnology, Purdue University E. Chagarov, L. Wang, P. Asbeck, A. Kummel, University of California, San Diego T. Boykin University of Alabama, Huntsville J. N. Schulman The Aerospace Corporation, El Segundo, CA. Acknowledgements: Herb Kroemer (UCSB), Bobby Brar (Teledyne) Art Gossard (UCSB), John Albrecht (DARPA) [email protected] 805-893-3244, 805-893-5705 fax Thin, high current density III-V FET channels InGaAs, InAs FETs THz & VLSI need high current low m*→ high velocities FET scaling for speed requires increased charge density low m* →low charge density Density of states bottleneck (Solomon & Laux IEDM 2001) → For < 0.6 nm EOT, silicon beats III-Vs Open the bottle ! low transport mass → high vcarrier multiple valleys or anistropic valleys → high DOS Use the L valleys. Simple FET Scaling Goal: double transistor bandwidth when used in any circuit → reduce 2:1 all capacitances and all transport delays → keep constant all resistances, voltages, currents gate-source, gate-drain fringing capacitances: 0.15-0.25 fF/mm Cgd / Wg ~ must increase gate capacitance/area gm / Wg ~ v (Cgs / LgWg ) Cgs / Wg (Cgs / Wg Lg ) Lg Cgs, f / Wg ~ must reduce gate length Todouble speed, we must double ( gm / Wg ) , (I D / Wg ), (Cgs / LgWg ), ns . FET Scaling Laws LG Changes required to double device / circuit bandwidth. laws in constant-voltage limit: FET parameter gate length current density (mA/mm), gm (mS/mm) channel 2DEG electron density electron mass in transport direction gate-channel capacitance density dielectric equivalent thickness channel thickness channel density of states source & drain contact resistivities Current densities should double Charge densities must double change decrease 2:1 increase 2:1 increase 2:1 constant increase 2:1 decrease 2:1 decrease 2:1 increase 2:1 decrease 4:1 gate width WG Semiconductor Capacitances Must Also Scale (Vgs Vth ) cox (unidirectionalmotion) cdepth /Tinversion ( E f Ewell ) / q cdos q2 gm* / 22 channelcharge qns cdos (Vf Vwell ) q( E f Ewell ) ( gm* / 22 ) Inversionthickness& densityof statesmust also bothscale. Calculating Current: Ballistic Limit Natori ChannelFermi voltage voltageapplied to cdos determinesFermi velocityv f through E f qVf m * v 2f / 2 meanelectronvelocity v (4 / 3 )v f Channelcharge: s cdos V f Vc cdos cequiv cequiv cdos V gs Vth cdos q2 gm* / 22 cdos ,o g (m * / mo ) , where g is the# of band minima mA Vgs Vth g (m * / mo )1 / 2 J 84 3/ 2 mm 1 (cdos ,o / cox ) g (m * / mo ) 1 V 3/ 2 Do we get highest current with high or low mass ? Drive current versus mass, # valleys, and EOT mA Vgs Vth J K1 84 mm 1 V normalized drive current K 1 0.35 3/ 2 , where K1 InGaAs <--> InP 1 (c g m* mo 1/ 2 * dos ,o / cequiv ) g ( m / mo ) Si 3/ 2 g=2 g=1 0.3 cequiv ( 1/cox 1/cdepth )1 0.25 εSiO2 /EOT 0.2 0.3 nm 0.15 0.4 nm 0.1 0.6 nm 0.05 EOT includes the wavefunction depth term (mean wavefunction depth* SiO2 /semiconductor ) 0 0.01 EOT=1.0 nm 0.1 m*/m 1 o InGaAs MOSFETs: superior Id to Si at large EOT. InGaAs MOSFETs: inferior Id to Si at small EOT. Solomon / Laux Density-of-States-Bottleneck → III-V loses to Si. Transit delay versus mass, # valleys, and EOT 1/ 2 Lg m* 1 Volt Qch ch K 2 where K 2 7 ID 2.5210 cm/s Vgs Vth m0 1/ 2 EOT=1.0 nm 1.5 0.6 nm 1 nm 0.4 nm 0.6 nm 0.4 nm 2 Normalized transit delay K 1/ 2 * cdos ,o m 1 g ceq mo 1 cequiv ( 1/cox 1/csemi )1 εSiO2 /EOT g=1, isotropic bands 0.5 g=2, isotropic bands EOT includes wavefunction depth term (mean wavefunction depth*SiO2 /semiconductor ) 0 0 0.05 0.1 0.15 0.2 0.25 m*/m 0.3 0.35 o Low m* gives lowest transit time, lowest Cgs at any EOT. 0.4 Low effective mass also impairs vertical scaling Shallow electron distribution needed for high Id, high gm / Gds ratio, low drain-induced barrier lowering. 2 . Energy of Lth well state L2 / m*Twell For thin wells, only 1st state can be populated. For very thin wells, 1st state approaches L-valley. Only one vertical state in well. Minimum ~ 3 nm well thickness. → Hard to scale below 10-16 nm Lg. III-V Band Properties, normal {100} Wafer L X valley mat erial substrat e m * / mo material substrate 0.045 In0.5Ga 0.5As InP 0.026 InAs InP 0.067 GaAs GaAs --Si Si ml / mo X valley mt / mo E x E ml / mo L valley mt / mo E L E 1.29 1.13 0.19 0.16 0.83eV 0.87eV 1.23 0.65 0.062 0.050 0.47eV 0.57eV 1.30 0.92 0.22 0.19 0.47eV 1.90 (negat ive) 0.075 0.28eV L - valley transversemasses are comparableto valleys Consider instead: valleys in {111} Wafer L X valley mat erial substrat e m * / mo material substrate 0.045 In0.5Ga 0.5As InP 0.026 InAs InP 0.067 GaAs GaAs --Si Si ml / mo X valley mt / mo E x E ml / mo L valley mt / mo E L E 1.29 1.13 0.19 0.16 0.83eV 0.87eV 1.23 0.65 0.062 0.050 0.47eV 0.57eV 1.30 0.92 0.22 0.19 0.47eV 1.90 (negat ive) 0.075 0.28eV Orientation : one L valleyhas high verticalmass X valleys& threeL valleyshavemoderateverticalmass Valley in {111} wafer: with quantization in thin wells L X valley mat erial substrat e m * / mo material substrate 0.045 In0.5Ga 0.5As InP 0.026 InAs InP 0.067 GaAs GaAs --Si Si ml / mo X valley mt / mo E x E ml / mo L valley mt / mo E L E 1.29 1.13 0.19 0.16 0.83eV 0.87eV 1.23 0.65 0.062 0.050 0.47eV 0.57eV 1.30 0.92 0.22 0.19 0.47eV 1.90 (negat ive) 0.075 0.28eV Selects L[111]valley;low transverse mass {111} -L FET: Candidate Channel Materials valley valley LLvalley / m EE E mm t /t mo o L L E 0.062 0.47 0.47 eV 0.062 eV Well thickness for mat erial /m m * / mo mm material L alignment l /l mo o In material 0.5Ga 0.5As 1.23 In Ga 0.045 1.23 1 nm (?) 0.5 0.5As GaAs 1.90 0.075 0.28 0.28 eV 0.075 eV 0.067 1.90 GaAs 2 nm GaSb 1.30 0.10 0.07 0.07 eV 0.10 eV 0.039 1.30 GaSb 4 nm Ge 1.58 0.08 (negat ive) - - - =0 eV L=177 meV X[100]= 264 meV X[010] = 337 meV Wavefunctions 3 nm GaAs well AlSb barriers Energy, eV Standard III-V FET: valley in [100] orientation 2 1.5 1 0.5 0 -0.5 -1 -1 X[010] X[100] L L 1st Approach: Use both and L valleys in [111] 2.3 nm GaAs well AlSb barriers [111] orientation -1 X L[111] L[111] L[111] = 41 meV L[111] (1)= 0 meV L[111] (2)= 84 meV L[111] , etc. =175 meV X=288 meV -1 L[111] Combined -L wells in {111} orientation vs. Si mA Vgs Vth J K1 84 mm 1 V 0.35 , where K1 1 (c g m mo GaSb GaAs * 1/ 2 / cequiv ) g (m / mo ) * dos ,o Si 1 Normalized current density K 3/ 2 g=2 0.3 cequiv ( 1/cox 1/csemi )1 εSiO2 /EOT 0.25 0.2 0.3 nm 0.15 0.4 nm 0.1 3/ 2 combined ( -L) transport 0.6 nm 0.05 EOT includes the wavefunction depth term (mean wavefunction depth*SiO2 /semiconductor ) 0 0.01 EOT=1.0 nm 0.1 m*/m o 2 nm GaAs /L well→ g =2, m*/m0=0.07 4 nm GaSb /L well→ m*/m0=0.039, mL,t*/m0=0.1 1 2nd Approach: Use L valleys in Stacked Wells Three 0.66 nm GaAs wells 0.66 nm AlSb barriers [111] orientation L[111](1) = 0 meV L[111](2)= 61 meV L[111](3)= 99 meV =338 meV L[111], etc =232 meV X=284 meV X L[111] L[111] -1 All L[111] -1 Increase in Cdos with 2 and 3 wells 3 C dos,N-well /C dos,1-well 3 wells 2.5 2 2 wells 1.5 1 0.01 1 nm well pitch 2 nm well pitch 3 nm well pitch 0.1 m*/m 1 o 3 High Current Density (111) GaAs/AlSb Designs (100) orientation (111) orientation 2.3 nm GaAs well AlSb barriers 2 1.5 1 0.5 0 -0.5 -1 Charge density, 1/cm 3 Wavefunctions Energy, eV 3 nm GaAs well AlSb barriers X[010] X[100] L L -1 2 s X L[111] L[111] L[111] Three 0.66 nm GaAs wells 0.66 nm AlSb barriers X L[111] L[111] X L[111] L[111] L[111] -1 -1 All L[111] both L[111] -1 20 1 10 19 8 10 19 6 10 19 4 10 19 2 10 0 0 10 -1 8 10 12 6 10 4 10 12 2 10 12 L[111] -1 -1 -1 0 1 2 3 4 5 6 7 position, nm 0 1 2 3 4 5 6 7 position, nm 12 N (1/cm ) Two 0.66 nm GaAs wells 0.66 nm AlSb barriers -1 0 1 2 3 4 5 6 7 position, nm 0 1 2 3 4 5 6 7 position, nm L valleys filling 0 0 0 0 -0.2 -0.1 0 0.1 0.2 0.3 -0.2 -0.1 0 0.1 0.2 0.3 -0.2 -0.1 0 0.1 0.2 0.3 -0.2 -0.1 0 0.1 0.2 0.3 (V -V ), V (V -V ), V (V -V ), V (V -V ), V gs th gs th gs th gs th Concerns Nonparabolic bands reduce bound state energies Failure of effective mass approximation:1-2 nm wells 1-2 monolayer fluctuations in growth → scattering→ collapse in mobility Purdue Confirmation Purdue Confirmation Steiger, Klimeck, Boykin Ryu, Lee, Hegde, Tan 1-D FET array = 2-D FET with high transverse mass 2-D FET 1-D Array FET Weak coupling → narrow transverse-mode energy distribution→ high density of states 3rd Approach: High Current Density L-Valley MQW FINFETs 8 2.5 nm well pitch Drain current, mA/mm 7 6 V -V =0.3 V gs 5 3 5 nm well pitch 2 1 EOT includes wavefunction depth term 0 0.01 2 2 2 i 2m*W 2 th 4 (mean wavefunction depth* valleyenergiesEmin,i qVmin,i 0.3 nm EOT 0.6 nm EOT current I i SiO2 / 0.1 m*/mo semiconductor ) 1 gq2 V f Vmin,i charge: Qch gl 2m*qV f Vmin,i gate voltage:Vgs Vf Qch / Cox i 4th Approach: {110} Orientation→ Anisotropic Bands P. Asbeck transport L [111],L[111 ] : moderateverticalmass valleyspopulate High in - planemass perpendicular totransport high densityof states Low in - planemass parallelto transport high carrier velocity L [1 1 1],[ 1 11]: low verticalmass depopulate High in - planemass parallelto transport low carrier velocity Challenge: onlymoderateenergyseparationbetween desired and undesired valleys. Anisotropic bands, e.g. {110} mA Vgs Vth J K1 84 mm 1 V 3/ 2 , where K1 1 normalized drive current K perpendicular g=2, m 0.6 nm 1/ 2 || / mo ) 3/ 2 0 /m =0.5 perpendicular 0 cequiv ( 1/cox 1/csemi )1 εSiO2 /EOT 0.3 Transport in {110} oriented L valleys EOT=1.0 nm 0.2 0.1 / cequiv ) g (m m 1/ 2 g=2, m /m =0.7 perpendicular 0 g=2, m /m =0.6 0.3 nm 0.4 nm 0.4 1 (c dos ,o 0.6 0.5 g (m1/ 2 / mo1/ 2 ) EOT includes wavefunction depth term (mean wavefunction depth* / 0 0.01 SiO2 semiconductor ) 0.1 m*/m 1 o GaAs and Ge {110}MOSFET s with L - valley transport GaAs : n 2, m t / mo 0.075, ml / mo 1.9 Ge : n 2, m t / mo 0.081, ml / mo 1.58 THz FET scaling: with & without increased DOS Gate length nm Gate barrier EOT nm well thickness nm S/D resistance effective mass # band minima canonical fixed DOS stepped # 50 1.2 8.0 Wmm 210 *m0 0.05 1 1 1 35 0.83 5.7 25 0.58 4.0 18 0.41 2.8 150 0.05 100 0.05 74 0.08 1.4 1 1 2 1 1 2.8 1 2 13 0.29 2.0 53 9 0.21 1.4 37 0.08 0.08 4 1 3 5.7 1 3 3000 2500 f 4000 2500 max 1500 3500 3000 fmax 2000 f f , GHz 2000 canonical scaling stepped # of bands transport only , GHz Scaled FET performance: fixed vs. increasing DOS 1500 1000 500 500 0 2.5 0 1000 SCFL static divider clock rate, GHz drain current density, mA/mm 1000 mA/mm→ VLSI metric 2 1.5 1 0.5 200 mV gate overdrive 0 0 10 20 30 40 gate length, nm 50 60 SCFL divider speed 800 600 400 200 0 0 10 20 30 40 gate length, nm 50 Increased density of states needed for high drive current, fast logic @ 16, 11, 8 nm nodes 60 10 nm / 3 THz III-V FETs: Challenges & Solutions gate dielectric: decrease EOT 2:1 To double the bandwidth: S/D access regions: decrease resistivity 2:1 S/D regrowth Wistey et al Singisetti et al channel: keep same velocity, but thin channel 2:1 increase density of states 2:1 L (end) Purdue Confirmation MOSFET Scaling Laws parameter gate length Lg , source-drain contact lengths Constant- voltage/ constant- velocity scaling laws : Changesrequired for : 1 increasedbandwidth in an arbitrarycircuit law 1 parameter gate-channel capacitance Cg ch law 1 [1 / Cox 1 / Csemi 1 / CDOS ]1 (fF) L S / D (nm) 1 transconductance g m ~ C g ch vinjection / Lg (mS) 0 equivalent oxide thickness Teq Tox SiO / oxide 1 1 (nm) dielectric capacitance Cox SiO LgWg / Teq (fF) gate-source, gate-drain fringing capacitances Cgs , f Wg , C gd Wg (fF) 1 S/D access resistances Rs , Rd ( W ) 0 S/D contact resistivity Rs / Wg , Rd / Wg ( W mm ) 1 gate width Wg (nm) 2 2 inversion thickness Tinv ~ Twell / 2 (nm) 1 S/D contact resistivity c ( W mm 2 ) 2 semiconductor capacitance Csemi semi LgWg / Tinv (fF) 1 drain current I d ~ g m (Vgs Vth ) (mA) 0 DOS capacitance CDOS q 2 nm* LgWg / 2 2 (fF) 1 drain current density ( mA/mm ) 1 electron density n s ( cm -2 ) 1 temperature rise (one device, K) ~ Wg1 2.0 nm GaAs well, AlAs barriers, on {111} GaAs Bound state energy, eV 1.2 1 valley 0.8 0.6 0.4 L(l) valley 0.2 0 -10 10 -9 10 well thickness, meters 10 -8 2 nm well : and L(l) minimaboth populated. : m * / mo 0.067 * L(l) : mlateral / mo 0.075 low m* high carrier velocity two band minima doubles cdos 2 nm well good electrostatics at ~ 5 - 7 nm Lg . GaSb well, AlSb barriers, on {110} GaSb GaSb well, AlSb barriers, on (110) GaSb Bound state energy, eV 0.6 0.5 L [111], L[11-1] 0.4 X [100], X[010] X [001] 0.3 L [1-11], L[-111] 0.2 0.1 0 -10 10 -9 10 well thickness, meters 10 -8