• Astroparticle Physics with High Energy Neutrinos: from AMANDA to IceCube astro-ph/0602132 • Lectures on High Energy Neutrino Astronomy astro-ph/0506248 • Latest Results astro-ph/0509330

Download Report

Transcript • Astroparticle Physics with High Energy Neutrinos: from AMANDA to IceCube astro-ph/0602132 • Lectures on High Energy Neutrino Astronomy astro-ph/0506248 • Latest Results astro-ph/0509330

• Astroparticle Physics with
High Energy Neutrinos:
from AMANDA to IceCube
astro-ph/0602132
• Lectures on High Energy
Neutrino Astronomy
astro-ph/0506248
• Latest Results
astro-ph/0509330
Flux Estimates of Cosmic Neutrinos
Particle physics:
cold dark matter search
Astrophysics:
gamma ray bursts & starbursts
Generic fluxes associated with
cosmic rays
Examples of Science
Nature’s Particle Accelerators
• Electromagnetic Processes:
– Synchrotron Emission
• Eg ~ (Ee/mec2)2 B
– Inverse Compton Scattering
• Ef ~ (Ee/mec2)2 Ei
– Bremsstrahlung
• Eg ~ 0.5 Ee
• Hadronic Cascades
– p + g  p± +po +…  e ± + n + g +…
– p + p  p± +po +…  e ± + n + g +…
Typical Multiwavelength Spectrum from
Non-Thermal High Energy g-ray Source
[ Energy
Emitted ]
synchrotron
E2 dN/dE
or
n Fn
Inverse Compton
Radio
Optical
X-ray
GeV
TeV
[ Photon Energy ]
Spinning Neutron Star Fills Nebula with Energetic Electrons
 Synchrotron Radiation and Inverse Compton Scattering
Active Galactic Nuclei
Massive Black Hole Accelerates Jet of Particles to Relativistic Velocities
 Synchrotron Emission and Inverse Compton
no evidence for protons but
… cosmic rays exist
gamma ray bursts
Fireball Phenomenology & The Gamma-Ray Burst (GRB) Neutrino Connection
Electron
---
Progenitor
(Massive star)
Magnetic Field
gray
6 Hours
3 Days
g-ray
ep+
Optical
X-ray
Radio
E  1051 – 1054 ergs
p  g    n  p  n     n   e n e n 
R < 108
cm
R  1014 cm, T  3 x 103 seconds
R  1018 cm, T  3 x 1016 seconds
(2-10 keV)
collapse of massive
star produces a
gamma ray burst
spinning black hole
highest energy
particles
neutrinos from GRB
• fireball: expanding collimated shocked jet of photons,
electrons and positrons becomes optically thin
• produces neutrinos in internal collisions when slower
material is overtaken by faster in the fireball
protons and photons coexist in the fireball
NUMEROLOGY
Lg = 1052 erg/s
R0 = 100 km (dt = 10 msec)
Eg = 1 MeV
g = 300
dEg/dt = dECR/dt = 4x1044 erg Mpc-3yr-1
tH = 1010 years
Pdet = 10-6 En0.8 (in TeV)
spg = 10-28 cm2 for p+gn+p
< xp  p > = 0.2
GRB1
fireball
fireball frame
at t=0
observer frame
R
R'
R
v
c
d
R = c t = R0
1 MeV
10 msec
with R0 = R' (t = 0)
g ~ 102 - 103
E = g E'
t = g-1 t'
grb 2 : kinematics
q
1 - 10 m sec
R 1
tobs 
2c g 2
Eobs  g E
R
c
q
v
R0  100 km
v
cos  
c
1
g 
 300
2
v
1- 2
c
d 1
t   ( R - R cos  )
c c
R
v
R
v2
 (1 - ) 
(1 - 2 )
c
c
2c
c
GRB1
fireball
fireball frame
at t=0
observer frame
R
R'
R
v
c
d
R = c t = R0
1 MeV
10 msec
with R0 = R' (t = 0)
g ~ 102 - 103
E = g E'
t = g-1 t'
GRB2
Photon Density in the Fireball
Lgt/g
______
2R'
U'
4pR'
g
___
ng =
=
E'
E'g
g
___
R' = g2ct
g
R' = gct
note: for g = 1 (no fireball) the optical
depth of photons is 
R
0
__
topt =
= R0ngsTh ~ 1015
lTh
GRB3
pion (neutrino) production when
protons and photons coexist
pg

np+
neutrinos
np0
gamma rays
2 - m2
m

p
_________
E'p >
4E'g
En = 1/4 < xp
p > Ep
Ep > 1.4 x 104 TeV
~
_
1/20 Ep
~
_
700 TeV
fraction of GRB energy converted into
pion (neutrino) production
R
1
fp 
 x p p   15% with lpg 
lpg
ng s pg
'
e
GRB
GRB4
p
(LCR)
synchro + IC
g (Lg)
pions
n
GRB 5
Neutrino flux from GRB fireballs
U
1
c
c
dE
n
___
___
__
fn =
= __
(
1/2 fp tH __ )
4p En
dt
4p En
charged pions only
Nevents = Psurvived Pdetected fn
~
_ 20 km -2 yr -1
LCR ~_ Lg
distribution of the sources critical !
Adding Fluctuations to the average:
• dN/dE: Source spectrum
• f(z): redshift distribution
function, with the integral
normalized to One
• E(source) = (1+z) E(here)
Number of GRBs
fluctuations
50 dominate !
45
40
35
(a)
30
25
20
15
10
5
0
10 -5 10 -4 10 -3 10 -2 10
Events [km-2]
-1
10 0
10 1
Correlations
to GRB
GRB search bin
Off source
GRB Position
GRB burst
16 s
1 hour
BKG - off time
1 hour
on time BKG - off time
background cuts can be
loosened considerably
 high signal efficiency
88 BATSE bursts in 1997
effective
area
~ 0.05 km2
starbursts
starbursts
• l ~ 100 pc
• v ~ 100 km/s
• t ~ 106 years
•  ~ 0.2 g cm-2
• B ~ 0.1 mGauss
merging galaxies
supernovae
cosmic rays
+ dense gas
pions
neutrino
radio connection
cosmic rays + dense gas
pions
electrons
neutrinos
radio
starburst neutrino flux
1 c
 tH [ 4 nLn ]
E n 
2 4p
2
n
 10
-7
GeV cm s sr
for   0.5
-2
-1
-1
( z - evolution)
~ 500 events
per km2 year
IceCube
search for dark matter particles
relic density
decoupling occurs when
Gann < H
G   s annv  n 
n
eq

 mT
 g  
 2p
3/2



H (T )  1.66 g*1 / 2
e - m / T
T2
mPlanck
m
G  H  Tf 
20
3  10-27 cm3 s-1
2
  h 
s ann v
s annv  s annv WIMP   1
the MSSM
The Lightest
Supersymmetric
Particle (LSP)
Usually the neutralino. If
R-parity is conserved, it is
stable.
The Neutralino – 
˜  N13 H
˜  N14 H
˜
˜  N11 B˜  N12 W
0
1
3
0
1
1.
2.
3.
4.
5.
6.
Select MSSM parameters
Calculate masses, etc
Check accelerator constraints
Calculate relic density
0.05 < h2 < 0.5 ?
Calculate fluxes, rates,...
Calculation done with
0
2
Gaugino fraction
2
Zg  N11  N12
2
http://www.physto.se/~edsjo/darksusy/
direct detection - general
principles


• WIMP + nucleus 
WIMP + nucleus
• Measure the nuclear recoil
energy
• Suppress backgrounds

December


June
• Search for an annual
modulation due to the
Earth’s motion around
the Sun
Edelweiss
June 2002
WIMP Capture and Annihilation

n
n
DETECT
+W+Wn+n
indirect detection for cyclists
e.g. 104 m2 n-telescope searches for 500 GeV WIMP
300 km/s
1.  - flux
> LHC limit
500GeV
     v  2.4 x 10 [
] cm -2 s -1
mZ
4
0.4 GeVcm
-3
500GeV
 8 x 10 [
] cm -3
mZ
-4
2. solar cross section
 sun  ns p
( GF m )
2
p
Msun

s p
mp
 [ 1.2 x 10
57
][ 10
-41
cm ]
2
G
~
M
2
F
2
Z
2
2 MZ
mH4
Nsun = capture rate = annihilation rate
_

500 GeV
WW
250 GeV
n
3. Capture rate by the sun
Nsun   sun  3 x 10 s
20
4. Number of muon-neutrinos
Nn  2 x 0.1 Nsun
-1
Nn
-8
-2 -1
n 
 2 x 10 cm s
2
4 pd
5.5 x 1023 cm-3
events  area time n ice sn R
104 m2
sn  10 -38 cm2 En ( GeV )  2.5 x 10 -36 cm2
~
_ 1
R  5 m E  ( GeV )  625 m ( E   En )
2
# events = 10 per year
WIMP search
Limits on muon flux from Earth
Limits on muon flux from Sun
AMANDA 1y
SK
Disfavored by
direct search
(CDMS II)
Antares 3 years
1km3 (IceCube)
IceCube
vs
Direct
Detection
(Zeppelin4/Genius)
Black: out
Green: yes
Blue: no
Inner Core Detector
Inner Core
(same region
as AMANDA)
7 IceCube + 18 AMANDA strings
225 DOMs + 540 OMs