• Astroparticle Physics with High Energy Neutrinos: from AMANDA to IceCube astro-ph/0602132 • Lectures on High Energy Neutrino Astronomy astro-ph/0506248 • Latest Results astro-ph/0509330
Download ReportTranscript • Astroparticle Physics with High Energy Neutrinos: from AMANDA to IceCube astro-ph/0602132 • Lectures on High Energy Neutrino Astronomy astro-ph/0506248 • Latest Results astro-ph/0509330
• Astroparticle Physics with High Energy Neutrinos: from AMANDA to IceCube astro-ph/0602132 • Lectures on High Energy Neutrino Astronomy astro-ph/0506248 • Latest Results astro-ph/0509330 Flux Estimates of Cosmic Neutrinos Particle physics: cold dark matter search Astrophysics: gamma ray bursts & starbursts Generic fluxes associated with cosmic rays Examples of Science Nature’s Particle Accelerators • Electromagnetic Processes: – Synchrotron Emission • Eg ~ (Ee/mec2)2 B – Inverse Compton Scattering • Ef ~ (Ee/mec2)2 Ei – Bremsstrahlung • Eg ~ 0.5 Ee • Hadronic Cascades – p + g p± +po +… e ± + n + g +… – p + p p± +po +… e ± + n + g +… Typical Multiwavelength Spectrum from Non-Thermal High Energy g-ray Source [ Energy Emitted ] synchrotron E2 dN/dE or n Fn Inverse Compton Radio Optical X-ray GeV TeV [ Photon Energy ] Spinning Neutron Star Fills Nebula with Energetic Electrons Synchrotron Radiation and Inverse Compton Scattering Active Galactic Nuclei Massive Black Hole Accelerates Jet of Particles to Relativistic Velocities Synchrotron Emission and Inverse Compton no evidence for protons but … cosmic rays exist gamma ray bursts Fireball Phenomenology & The Gamma-Ray Burst (GRB) Neutrino Connection Electron --- Progenitor (Massive star) Magnetic Field gray 6 Hours 3 Days g-ray ep+ Optical X-ray Radio E 1051 – 1054 ergs p g n p n n e n e n R < 108 cm R 1014 cm, T 3 x 103 seconds R 1018 cm, T 3 x 1016 seconds (2-10 keV) collapse of massive star produces a gamma ray burst spinning black hole highest energy particles neutrinos from GRB • fireball: expanding collimated shocked jet of photons, electrons and positrons becomes optically thin • produces neutrinos in internal collisions when slower material is overtaken by faster in the fireball protons and photons coexist in the fireball NUMEROLOGY Lg = 1052 erg/s R0 = 100 km (dt = 10 msec) Eg = 1 MeV g = 300 dEg/dt = dECR/dt = 4x1044 erg Mpc-3yr-1 tH = 1010 years Pdet = 10-6 En0.8 (in TeV) spg = 10-28 cm2 for p+gn+p < xp p > = 0.2 GRB1 fireball fireball frame at t=0 observer frame R R' R v c d R = c t = R0 1 MeV 10 msec with R0 = R' (t = 0) g ~ 102 - 103 E = g E' t = g-1 t' grb 2 : kinematics q 1 - 10 m sec R 1 tobs 2c g 2 Eobs g E R c q v R0 100 km v cos c 1 g 300 2 v 1- 2 c d 1 t ( R - R cos ) c c R v R v2 (1 - ) (1 - 2 ) c c 2c c GRB1 fireball fireball frame at t=0 observer frame R R' R v c d R = c t = R0 1 MeV 10 msec with R0 = R' (t = 0) g ~ 102 - 103 E = g E' t = g-1 t' GRB2 Photon Density in the Fireball Lgt/g ______ 2R' U' 4pR' g ___ ng = = E' E'g g ___ R' = g2ct g R' = gct note: for g = 1 (no fireball) the optical depth of photons is R 0 __ topt = = R0ngsTh ~ 1015 lTh GRB3 pion (neutrino) production when protons and photons coexist pg np+ neutrinos np0 gamma rays 2 - m2 m p _________ E'p > 4E'g En = 1/4 < xp p > Ep Ep > 1.4 x 104 TeV ~ _ 1/20 Ep ~ _ 700 TeV fraction of GRB energy converted into pion (neutrino) production R 1 fp x p p 15% with lpg lpg ng s pg ' e GRB GRB4 p (LCR) synchro + IC g (Lg) pions n GRB 5 Neutrino flux from GRB fireballs U 1 c c dE n ___ ___ __ fn = = __ ( 1/2 fp tH __ ) 4p En dt 4p En charged pions only Nevents = Psurvived Pdetected fn ~ _ 20 km -2 yr -1 LCR ~_ Lg distribution of the sources critical ! Adding Fluctuations to the average: • dN/dE: Source spectrum • f(z): redshift distribution function, with the integral normalized to One • E(source) = (1+z) E(here) Number of GRBs fluctuations 50 dominate ! 45 40 35 (a) 30 25 20 15 10 5 0 10 -5 10 -4 10 -3 10 -2 10 Events [km-2] -1 10 0 10 1 Correlations to GRB GRB search bin Off source GRB Position GRB burst 16 s 1 hour BKG - off time 1 hour on time BKG - off time background cuts can be loosened considerably high signal efficiency 88 BATSE bursts in 1997 effective area ~ 0.05 km2 starbursts starbursts • l ~ 100 pc • v ~ 100 km/s • t ~ 106 years • ~ 0.2 g cm-2 • B ~ 0.1 mGauss merging galaxies supernovae cosmic rays + dense gas pions neutrino radio connection cosmic rays + dense gas pions electrons neutrinos radio starburst neutrino flux 1 c tH [ 4 nLn ] E n 2 4p 2 n 10 -7 GeV cm s sr for 0.5 -2 -1 -1 ( z - evolution) ~ 500 events per km2 year IceCube search for dark matter particles relic density decoupling occurs when Gann < H G s annv n n eq mT g 2p 3/2 H (T ) 1.66 g*1 / 2 e - m / T T2 mPlanck m G H Tf 20 3 10-27 cm3 s-1 2 h s ann v s annv s annv WIMP 1 the MSSM The Lightest Supersymmetric Particle (LSP) Usually the neutralino. If R-parity is conserved, it is stable. The Neutralino – ˜ N13 H ˜ N14 H ˜ ˜ N11 B˜ N12 W 0 1 3 0 1 1. 2. 3. 4. 5. 6. Select MSSM parameters Calculate masses, etc Check accelerator constraints Calculate relic density 0.05 < h2 < 0.5 ? Calculate fluxes, rates,... Calculation done with 0 2 Gaugino fraction 2 Zg N11 N12 2 http://www.physto.se/~edsjo/darksusy/ direct detection - general principles • WIMP + nucleus WIMP + nucleus • Measure the nuclear recoil energy • Suppress backgrounds December June • Search for an annual modulation due to the Earth’s motion around the Sun Edelweiss June 2002 WIMP Capture and Annihilation n n DETECT +W+Wn+n indirect detection for cyclists e.g. 104 m2 n-telescope searches for 500 GeV WIMP 300 km/s 1. - flux > LHC limit 500GeV v 2.4 x 10 [ ] cm -2 s -1 mZ 4 0.4 GeVcm -3 500GeV 8 x 10 [ ] cm -3 mZ -4 2. solar cross section sun ns p ( GF m ) 2 p Msun s p mp [ 1.2 x 10 57 ][ 10 -41 cm ] 2 G ~ M 2 F 2 Z 2 2 MZ mH4 Nsun = capture rate = annihilation rate _ 500 GeV WW 250 GeV n 3. Capture rate by the sun Nsun sun 3 x 10 s 20 4. Number of muon-neutrinos Nn 2 x 0.1 Nsun -1 Nn -8 -2 -1 n 2 x 10 cm s 2 4 pd 5.5 x 1023 cm-3 events area time n ice sn R 104 m2 sn 10 -38 cm2 En ( GeV ) 2.5 x 10 -36 cm2 ~ _ 1 R 5 m E ( GeV ) 625 m ( E En ) 2 # events = 10 per year WIMP search Limits on muon flux from Earth Limits on muon flux from Sun AMANDA 1y SK Disfavored by direct search (CDMS II) Antares 3 years 1km3 (IceCube) IceCube vs Direct Detection (Zeppelin4/Genius) Black: out Green: yes Blue: no Inner Core Detector Inner Core (same region as AMANDA) 7 IceCube + 18 AMANDA strings 225 DOMs + 540 OMs