E166 “Polarized Positrons for Future Linear Colliders” John C. Sheppard E166 Co-spokesman SLAC: August 31, 2004
Download ReportTranscript E166 “Polarized Positrons for Future Linear Colliders” John C. Sheppard E166 Co-spokesman SLAC: August 31, 2004
E166 “Polarized Positrons for Future Linear Colliders” John C. Sheppard E166 Co-spokesman SLAC: August 31, 2004 Introduction • • • Overview and purpose of E166 Experimental Setup Status & Milestones Collaboration • About 45+2 members from 16+1 institutions from all three regions (Asia, Europe, the Americas, and Daresbury) • John Sheppard, Kirk McDonald (co-spokesmen) Overview of E166 • • • • • Demonstration experiment for production of polarized e+ FFTB at SLAC with 50 GeV, 1010 e-/pulse , 30 Hz 1 m long helical undulator produces circular polarized radiation 0-10 MeV Conversion of photons to positrons in 0.5 rad Ti-target Measurement of polarization of positrons by Compton transmission method Idea from Alexander Michailichenko 4 Polarized positrons at linear colliders • • • • The >150 GeV electron beam itself is used for the production of polarized positrons Electron beam passes a 200m helical undulator (50% surplus) After conversion, the positrons are captured and accelerated They collide with a subsequent bunch train E-166 Experiment E-166 is a demonstration of undulator-based production of polarized positrons for linear colliders: - Photons are produced in the same energy range and polarization characteristics as for a linear collider; -The same target thickness and material are used as in the linear collider; -The polarization of the produced positrons is expected to be in the same range as in a linear collider. -The simulation tools are the same as those being used to design the polarized positron system for a linear collider. - However, the intensity per pulse is low by a factor of 2000. TESLA, NLC/USLCSG, and E-166 Positron Production ILC/ Table 1: TESLA, NLC/USLCSG, E-166 Polarized Positron Parameters Parameter Units TESLA* NLC E-166 ILC GeV 150-250 150 50 Beam Energy, Ee 10 9 3x10 8x10 1x1010 Ne/bunch 2820 190 1 Nbunch/pulse Hz 5 120 30 Pulses/s planar helical helical Undulator Type 1 1 0.17 Undulator Parameter, K cm 1.4 1.0 0.24 Undulator Period u st MeV 9-25 11 9.6 1 Harmonic Cutoff, Ec10 photons/m/e 1 2.6 0.37 dN/dL m 135 132 1 Undulator Length, L Ti-alloy Ti-alloy Ti-alloy, W Target Material r.l. 0.4 0.5 0.5 Target Thickness % 1-5 1.8† 0.5 Yield % 25 20 Capture Efficiency 12 12 8.5x10 1.5x10 2x107 N+/pulse 3x1010 8x109 2x107 N+/bunch % 40-70 40-70 Positron Polarization *TESLA baseline design; TESLA polarized e+ parameters (undulator and polarization) are the same as for the NLC/USLCSG † Including the effect of photon collimation at = 1.414. E166 Equipment E166 Undulator Area Spectrometer Area Beam Intensities & Energies • 1010 electrons/bunch @ 50GeV into the undulator 5x106 phE 4 x 109 photons @ < 10 MeV 5 x 104 phE 4 x 109 photons 2 x 107 e+ 4 x 107 photons ~ 500 TeV 4 x 105 e+ 1 x 103 photons of total ~ 5 GeV (~ 5 MeV) The helical undulator • • • • • • • Rotating magnetic field Wire winded helically Inner diameter 0.89 mm Magnetic field: 0.76 T Pulsed current: 2300 A Rate 30 Hz 1010 e-/pulse incident Parameter NLC E166 Length 240 m 1m Beam 150 GeV 50 GeV Period 10 mm 2.4 mm Strength K 1 0.17 Cutoff ~10 MeV 9.6 MeV Positrons 3 x 1010 2 x 107 Undulator radiation • Produced photons, cutoff and polarization 30.6 K 2 phot phot 0 . 37 dL mm 1 K 2 m e m e dN 2 Ee / 50 GeV EC 24 MeV 9.6 MeV 2 mm1 K Energy spectrum Polarization +1 5 MeV 5 MeV -1 Target and spectrometer Material Polarization Ti 0.25 rad. 52 % Ti 0.5 rad. 53 % W-Re 0.5 rad. 49 % With Photons from Undulator Polarization / dN/dE • Target: Ti or W-Re, yield 0.5 % Energy spectrometer: spread 20% Positron energy (MeV) 5 MeV Extraction Counts • Pos. energy (MeV) CsI Calorimeter • • • • • • „DESY Zeuthen and Humboldt University Berlin“ Pack 3 x 3 crystals in a stack CsI crystals: ~ 6 cm X 6 cm X 28 cm from DESY ~1000 Re-converted photons -> Max 5 GeV Readout by PIN diodes (large linear dynamic range) 14 degrees aparture Magnet e+ W-Target Aerogel flux counters and Si-W calorimeter • Aerogel energy threshold: 4.3 MeV • Photon flux measurement Si-W calorimeter 4 x 4 Stack of 20 plates of W (1 rad. length thickness) Up to 500 TeV signal Total energy of undulator photons Status of Subcomponents Component Status Helical undulator 1.0 m prototype „Cornell University“ Positron transport system In design Institution „Princeton University“ Analyzer magnets In construction „DESY Hamburg“ CsI calorimeter Prototype, „DESY Zeuthen/ In construction Humboldt Unversity Berlin Si-W calorimeter Ready „University Tenessee“ Aerogel counters Ready „Princeton University“ DAQ and Readout Ready „SLAC“ In Discussion „E166“ Data Analysis E166 Milestones E166 Schedule • Now thru October 1, 2004: • October 1st thru November 1st : • Develop DAQ (T467) Develop/build equipment Install Equipment PreBeam Equipment Check Checkout, Backgrounds, Initial Data Run January 1st thru February 1st, 2005 : Checkout, Backgrounds, Initial Data Run E-166 Beamline Schematic 50 GeV, low emittance electron beam 2.4 mm period, K=0.17, helical undulator 10 MeV, polarized photons 0.5 r.l. converter target 51%-54% positron polarization Moffeit/Woods E-166 Beam Request E-166 Beam Parameters Ee GeV 50 frep Hz 30 Ne e1x1010 ex=ey m-rad 3x10-5 xy m 5.2, 5.2 sx,sy mm sE/E The SLAC FFTB: •Built to Demonstrate LC FFS: 60-70 nm rms spot •28- 50 GeV Beam Energy • e = 1.5x10-5/ 1.5x10-6 m-rad (x/y) • sz = 50-500 mm • Nb = 0.1-4x1010 e-/bunch • 2.5 kW Power Limit (1x1010 @ 30 Hz and 50 GeV) • 1 W Continuous Beam Loss Limit SLAC FFTB SLAC FFTB E166 FFTB Tunnel 1 E166 FFTB Tunnel 2 E166 FFTB Optics, RHI E166 PS: B406 E166 DAQ: B407 E166 CsI and Electronics, B407 E166 CsI and Electronics, B407 SLAC FFTB, IP1 SLAC FFTB:B06G, PC7.5 SLAC FFTB: Det. Tables SLAC FFTB Table Cornell: Undulators DESY-HH: Analyzer Magnets E-166 Beam Measurements •Photon flux and polarization as a function of K. •Positron flux and polarization for K=0.17, 0.5 r.l. of Ti vs. energy. •Positron flux and polarization for 0.1 r.l. and 0.25 r.l. Ti and 0.1, 0.25, and 0.5 r.l. W targets. •Each measurement is expected to take about 20 minutes. •A relative polarization measurement of 10% is sufficient to validate the polarized positron production processes Conclusions • • • E166 is a demonstration of production of polarized positrons for future linear colliders Uses the 50 GeV FFTB at SLAC Approved by SLAC in June 2003 • Installation of total experiment in FFTB tunnel in August, September, October(?) 2004 • First data taking run in October 2004 Second data taking run in January 2005 • The end …