Presentation Slides for Chapter 11, Part 1 of Fundamentals of Atmospheric Modeling 2nd Edition Mark Z.
Download ReportTranscript Presentation Slides for Chapter 11, Part 1 of Fundamentals of Atmospheric Modeling 2nd Edition Mark Z.
Presentation Slides for Chapter 11, Part 1 of Fundamentals of Atmospheric Modeling 2nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering Stanford University Stanford, CA 94305-4020 [email protected] March 21, 2005 Types of Gases Inorganic gases Contain O, N, S, Cl, Br, and maybe H or C, but not both Nitric oxide -- N O Carbon dioxide -- O C O Organic gases Contain both H and C, but may also contain other atoms O Formaldehyde -- H C H Acetone -- H H O H C C C H H Peroxyacetylnitrate -- H H H C H O O C O O N O Hydrocarbons Organic gases that contain only hydrogen and carbon Alkanes - Carbons bonded by a single bond Propane -- H H H H C C C H H H H Cycloalkanes - A ring of alkanes Cyclobutane -- H2C CH2 H2C CH2 Alkenes - Carbons bonded by a double bond H Ethene (ethylene) -- H C H C H Hydrocarbons Aromatics - Carbons that form a benzene ring CH 3 Toluene -- Terpenes - Biogenic hydrocarbons Isoprene -- H C H2C CH3 C CH2 Definitions Non-methane hydrocarbons (NMHC) Hydrocarbons, except for methane Oxygenated hydrocarbons Hydrocarbons with oxygenated functional groups, such as aldehydes, ketones, alcohols, acids, and nitrates, added to them Reactive organic gas (ROG) The sum of oxygenated and NMHC Total organic gas (TOG) The sum of ROG and methane Photostationary State Relationship (11.1) NO + O3 NO2 + O2 (11.2) NO2 + h NO + O < 420 nm (11.3) O + O2 + M O3 + M Time rate of change of nitrogen dioxide dNO 2 (11.4) k1NOO 3 J NO 2 dt Steady state --> photostationary state relationship O 3 J NO 2 k1NO (11.5) Photostationary State Relationship Example 11.1: Estimate ozone mixing ratio when pa = 1013 hPa NO = 5 pptv k1 = 1.8x10-14 cm3 molec.-1 s-1 Solution: [O3] = 1.1x1012 molec. cm-3 Nd = 2.46 x 1019 molec. cm-3 O3 = 44.7 ppbv T = 298 K NO2 = 10 pptv J = 0.01 s-1 Other Reactions Affecting Ozone Photodissociation of ozone O3 + h (11.6) < 310 nm O2 + O(1D) (11.7) O3 + h > 310 nm O2 + O Conversion of excited to ground-state atomic oxygen M O(1D) O (11.8) Hydroxyl Radical Sources Major (11.9) O(1D) + H2O Minor 2OH (11.10-13) HONO + h OH + NO < 400 nm HNO3 + h OH + NO2 < 335 nm H2O2 + h 2OH < 355 nm HO2 + NO2 < 330 nm OH + NO3 < 330 nm HO2NO2 + h Scavenging by Hydroxyl Radical (11.14-17) OH + O3 HO2 + O2 OH + H2 H2O + H OH + HO2 OH + H2O2 H2O + O2 HO2 + H2O Scavenging by Hydroxyl Radical (11.19-23) M OH + NO2 OH + SO2 OH + CO OH + CH4 HNO3 M HSO 3 H + CO2 H2O + CH3 Hydroperoxy Radical Production (11.27) M H + O2 HO2 (11.28) HO2 NO2 M HO2 + NO2 Hydroperoxy Radical Loss Hyrdoxyl radical reactions in presence of NO HO2 + NO HO2 + NO2 HO2 + O3 OH + NO2 M HO2NO2 OH + 2O2 (11.29) (NO > 10 pptv) (11.30) (NO 3-10 pptv) (11.31) HO2 + HO2 H2O2 + O2 (NO < 3 pptv) Nighttime Nitrogen Chemistry Production of nitrate radical (11.32) NO2 + O3 NO3 + O2 Dinitrogen pentoxide formation / decomposition NO2 + NO3 M N2O5 (11.33) Nighttime Nitrogen Chemistry Dinitrogen pentoxide reaction, photolysis N2O5 + H2O(aq) (11.34) 2HNO3(aq) (11.36) N2O 5 + h < 385 nm NO2 + NO3 Nitrate radical photolysis (lifetime of minutes) NO3 + h (11.35) NO2 + O 410 nm < < 670 nm NO + O2 590 nm < < 630 nm Ozone From Carbon Monoxide CO + OH CO2 + H M H + O2 NO + HO2 NO2 + h NO + O O + O2 + M HO2 NO2 + OH < 420 nm O3 + M (11.37-41) Ozone Formation From Methane CH4 + OH H + NO H H H H + O2, M C H Methyl radical H C O O H + HO2 Methylperoxy radical O + O2 + M O O H HO2 C H Formaldehyde H H NO + O C + O2 H Methoxy radical NO2 O2 NO2 + h (11.42) CH3 + H2O C O O H (11.43) H Methyl hydroperoxide < 420 nm (11.40) O3 + M (11.41) Methyl Hydroperoxide Decomposition (11.44) + h < 360 nm H H H H C O O H H + O2 C O OH H Methoxy radical + OH H Methyl hydroperoxide H H2O C O H Methylperoxy radical O H HO2 O C H Formaldehyde Ethane Oxidation Methylperoxy radical production and loss H H H C C H H Ethane + OH H H H2O H H C C H H Ethyl radical (11.45) + O2, M H H H C C H H O O Ethylperoxy radical Ethane Oxidation (11.46) + NO H H H H H H C C O NO2 C H O H H H H H + NO2 H C O C H Acetaldehyde H H M C H HO2 Ethoxy radical O Ethylperoxy radical C + O2 C O O O N H H Ethylperoxynitric acid O Propane Oxidation Methylperoxy radical production and loss H H H H C C C H H H + OH H H H2O Propane H H C C C H H H + O2, M H n-Propyl radical + NO H NO2 H H H H C C H H H C (11.47) H H C C C H H H O O n-Propylperoxy radical + O2 O n-Propoxy radical H H HO2 H O H C C H C H H Acetone Formaldehyde/Acetaldehyde Photolysis Formaldehyde O O H H C + h (11.48) + H < 334 nm Formyl radical C H < 370 nm CO + H2 Formaldehyde Acetaldehyde H H C O C H H Acetaldehyde (11.49) H + h H C O + H M ethyl radical Eormyl radical O H Formyl radical (11.50) + O2 C H Formyl radical < 325 nm C CO HO2 Formaldehyde/Acetaldehyde Reaction Formaldehyde (11.51) + OH O H O C C H Formaldehyde H H2O Formyl radical Acetaldehyde H H C O (11.52) + OH C H H Acetaldehyde H H H2O C O C H Acetyl radical H + O2, M H C H O C O O Peroxyacetyl radical Formaldehyde/Acetaldehyde Reaction PAN formation (11.53) H + NO H C O C O H H H C H O NO2 Acetyloxy radical C O Peroxyacetyl radical O H + NO2, M H C H O C O O O N O Peroxyacetyl nitrate Acetone Photolysis (11.55) H H O H C C C H H H Acetone H + h H C H O C H Acetyl radical + H C H Methyl radical Sulfur Photochemistry Biogenic sulfur H2S -- hydrogen sulfide CH3SH -- methyl sulfide CH3SCH3 -- dimethyl sulfide (DMS) CH3SSCH3 -- methyl disulfide Volcanic sulfur CS2 -- carbon disulfide OCS -- carbonyl sulfide SO2 -- sulfur dioxide H2S -- hydrogen sulfide Sulfur Photochemistry Sulfuric acid formation from sulfur dioxide S O O Sulfur dioxide + O2 O + OH, M O S HO (11.74) O S O Bisulfite HO2 O O + H2O O Sulfur trioxide S OH OH Sulfuric acid DMS Abstraction Pathway Sulfur dioxide production from dimethyl sulfide (DMS) (11.56) H H H C S H + OH H C H H H Dimethyl sulfide (DMS) NO2 C H S H + O2 H C H S C H DM S oxy radical S H C O O H DMS peroxy radical O H M O C H H H DMS radical H H C H H2O + NO H C S + H C H H M ethanethiolate radical Formaldehyde DMS Abstraction Pathway Methanethiolate radical reaction (11.57) + NO H H NO2 H H C H + O2, M S H M ethanethiolate radical H C O* S Excited methanethiolate peroxy radical S O H M ethanethiolate oxy radical O H C H M H C O S O H M ethanethiolate peroxy radical DMS Abstraction Pathway Methanethiolate oxy radical reaction (11.58) H M H C + H M ethyl radical H H C S O H M ethanethiolate oxy radical H O2 C O S O Sulfur monoxide H + O3 S O H M ethanethiolate peroxy radical DMS Abstraction Pathway Sulfur dioxide production from sulfur oxide + O2 S S O Sulfur monoxide (11.59) O O Sulfur dioxide O Sulfur dioxide production from sulfur oxide H H C O S O H M ethanethiolate peroxy radical (11.60) H M H C H M ethyl radical + S O O Sulfur dioxide DMS Addition Pathway Methanethiolate oxy radical reaction (11.61) M H H C H H S C + OH H H H H OH H C S H C H H H H C DM S-OH adduct S O + H H M ethanesulfenic acid + OH, 2O2 H O H H Dimethyl sulfide (DM S) H H 2HO2 C S C H O H C H M ethyl radical H Dimethyl sulfone (DM SO2) DMS Addition Pathway Methanesulfenic acid oxidation H H C H S M ethanesulfenic acid H + OH O H (11.62) H H2O C S O H M ethanethiolate oxy radical DMDS Reaction OH addition (11.63) H H H C S S H C H + OH H H H C H H S O + H H Dimethyl disulfide (DM DS) M ethanesulfenic acid M ethanethiolate radical (11.64) H C H S H Photolysis H C H S S C H H + h H Dimethyl disulfide (DM DS) 2 H C S H M ethanethiolate radical Biogenic Sulfur Hydrogen sulfide oxidation + OH S H (11.65) S H H H2O Hydrogen sulfide Hydrogen sulfide radical reaction Hydrogen sulfide radical (11.66) + O2 S S H O OH Hydrogen sulfide radical Sulfur monoxide Sulfur dioxide production from sulfur oxide + O2 S O Sulfur monoxide S O O O Sulfur dioxide (11.59) Volcanic Sulfur Sulfur monoxide production from carbonyl sulfide O C S S + OH H Hydrogen sulfide radical Carbonyl sulfide (11.68) + CO2 (11.69) O C S + h CO Carbonyl sulfide S + Carbon monoxide Atomic sulfur (11.70) + O2 S S Atomic sulfur O < 260 nm O Sulfur monoxide Volcanic Sulfur Sulfur oxide production from carbon disulfide S C S S + OH + H Hydrogen sulfide radical Carbon disulfide (11.71) O C S Carbonyl sulfide (11.72) S C S + h C Carbon disulfide S Carbon monosulfide + < 340 nm S Atomic sulfur (11.73) C S Carbon monosulfide + O2 O C S + O Carbonyl sulfide Urban Photochemistry Ozone production in smog NO + ROG* (11.75-8) NO2 + ROG** NO + O3 NO2 + O2 NO2 + h NO + O O + O2 + M O3 + M < 420 nm Ozone Isopleth 0.32 0.32 0.16 0.24 0.24 0.08 0.16 0.1 0.4 3 0.15 0.08 = O (g), ppmv NO x x (ppmv) 0.2 NO (g) (ppmv) 0.25 0.05 0 0 0.5 Contours are ozone (ppmv) 1 1.5 ROG (ppmC) 2 Fig. 11.1 Wind speed (m -1 -1 s )) Wind speed (m s Sea Breeze 7 6 5 4 3 2 1 Day 1 Day 2 Day 3 0 0 6 12 18 24 30 36 42 48 54 60 66 72 Hour of day Fig. 11.2 Central Los Angeles August 28, 1987 0.2 NO NO 2 O 0.1 3 0 0 6 12 18 Hour of day 24 Volume mixing ratio (ppmv) 0.3 Volume mixing ratio (ppmv) Volume mixing ratio (ppmv) Source/Receptor Regions in Los Angeles 0.3 San Bernardino August 28, 1987 0.2 NO O 3 2 0.1 NO 0 0 6 12 18 Hour of day 24 72 Fig. 11.2 Daily Los Angeles Emission (1987) Gas Carbon monoxide Nitric oxide Nitrogen dioxide Nitrous acid Total NOx+HONO Sulfur dioxide Sulfur trioxide Total SOx(g) Alkanes Alkenes Aldehydes Ketones Alcohols Aromatics Hemiterpenes Total ROGs Methane Emission (tons/day) 9796 754 129 6.5 889.5 109 4.5 113.5 1399 313 108 29 33 500 47 2429 904 Percent of total 69.3 Total emission 14,132 100 6.3 0.8 27.2 6.4 Table 11.2 Percent Emission by Source Nitric oxide from combustion N N + O Source Category Stationary Mobile Total O (11.79) + heat CO(g) 2 98 100 NOx(g) 24 76 100 2 N SOx(g) 38 62 100 O ROG 50 50 100 Table 11.4 Organic Gases Emitted in Greatest Abundance in Los Angeles (1987) 1. Methane 2. Toluene 3. Pentane 4. Butane 5. Ethane 6. Ethylene 7. Octane 8. Xylene 9. Heptane 10. Propylene 11. Chloroethylene 12. Acetylene 13. Hexane 14. Propane 15. Benzene Table 11.3 Most Important Gases in Smog in Terms of Ozone Reactivity and Abundance 1. m- and p-Xylene 2. Ethene 3. Acetaldehyde 4. Toluene 5. Formaldehyde 6. i-Penane 7. Propene 8. o-Xylene 9. Butane 10. Methylcyclopentane Table 11.6 Lifetimes of ROGs Against Loss in Urban Air ROG Species n-Butane trans-2-butene Acetylene Formaldehyde Acetone Ethanol Toluene Isoprene Phot. ------7h 23 d ------- OH 22 h 52 m 3d 6h 9.6 d 19 h 9h 34 m HO2 O 1000 y 18 y 4y 6.3 d --2.5 y 1.8 h 2.5 y ----------6y --4d Table 11.5 NO3 29 d 4m --2d ----33 d 5m O3 650 y 17 m 200 d 3200 y ----200 d 4.6 h OH Sources in Polluted Air Early morning source HONO + h (11.80) < 400 nm OH + NO Mid-morning source HCHO + h (11.81) < 334 nm H + HCO M H + O2 HO2 HCO + O2 HO2 + CO NO + HO2 NO2 + OH (11.82) (11.83) (11.84) Hydroxyl Rad. Sources in Polluted Air Afternoon source O3 + h (11.88) < 310 nm O2 + O(1D) O(1D) + H2O 2 OH (11.86) Alkene Reaction With Hydroxyl Radical Ethene oxidation H H C + OH, M (11.87) H C H C H Ethene OH H H C H Ethanyl radical + O2, M H O + NO C C O H H NO2 Ethanolperoxy radical H OH H OH C H H C O H Ethanoloxy radical Alkene Reaction With Hydroxyl Radical Ethanoloxy radical oxidation (11.88) H 72% H OH C H H C O H Ethanoloxy radical C 2 H Formaldehyde + O2 H HO2 O OH C 28% H O C H Glycol aldehyde