Imaging RNA structures and folding intermediates using electron cryo-microscopy Tobin R. Sosnick Dept.
Download ReportTranscript Imaging RNA structures and folding intermediates using electron cryo-microscopy Tobin R. Sosnick Dept.
Imaging RNA structures and folding intermediates using electron cryo-microscopy Tobin R. Sosnick Dept. of Biochemistry and Molecular Biology Institute for Biophysical Dynamics University of Chicago RNA can form irregular tertiary structures Ribosome Sarcin Ricin loop P RNA subdomain Group I Intron tRNA How do they obtain these structures? Kinetics --- Thermodynamics --- Structure Only the sequence is needed! “Mother Folding” RNA Primary Sequence (nucleotides amino acids) Native Unfolded Metal requirement: Tertiary RNAs typically require divalent cations to fold. Two classes of cation-RNA interactions 1. non-specific binding (counter-ion condensation, Me+ or Me2+ ) 2. High occupancy metal sites are observed in crystal structures of tertiary RNAs (often Me2+). duplex tRNA + + + + + + + + + + + + + + + + + + + P4-P6 domain + + + + + + + + + Me2+ + + + + + + + + + Non-specific binding occurs at low [Me], stabilizes secondary structures Specific binding at higher [Me2+] is involved in tertiary folding transitions. “Mg2+ core” Bacillus stearothermophilus Rnase P RNA Specificity S-domain (~150 nt) UG ACG A 200 A CA GA A UA G G CU A 160 G P10.1 G U C GG A U AU A UC GAG C G U U G U U A GA P12 U CU GC A G A C G CA C G UC U A C U CG U CU A G 140 A G AG A U AA A P11 GA G G A C A 220 A G A A G CC A G C A A A GGCU G C C U G GC G U U C U GA C C U P10 240 G U P15 A A A U P5 CG G P9 A G C GA G A A A C C C U 120 G CGU G U A C C G G G 260 P8 U U P7 G U U C G C U C U A G G G C A U A U A 60 UG 280 G G G C A U AG G A C GA C 80 C G A A P15.1 A A A G U C G C CU U C U U C U U A A G C P5.1 C U CU GA G C G GA A G A G U C G AC U U 300 A A AG G 100 A G A GCA A UG GA AU A A UC G U A G P18 U U C G A G A U 40 G U P3 A A G U GA A U C U GU AG 340 G G GA U G A 320 A C U C U A GA C GUC G CG U G U C C G P4 A U 20 U A U UG U A U A G A AC G P2 A U G 360 C 1 U G U G P19 P1 G C C G U U C U U AA C GU U C G G C GC G UA G A A CA A GA U U GC AA G A C 400 C A A C U U C GGU A C AA U UCA Catalytic C-domain (~255 nt) 380 Pace and coworkers, PNAS 2005 Mg2+-induced equilibrium folding of C-domain of P RNA UI K Mg K IN Mg 6.0 CD(260) 5.0 U N I 4.0 Abs (260) 2.5 2.4 2.3 2.2 At low [Me2+], non-specific (and specific) binding, 3.0 CD(287) 1.7 1.6 U1 U2 | Ui 1.5 1.4 1.3 UI K Mg Ieq K IN Mg N At high [Me2+], energetics of dominated by specific binding fluor. 0.60 +n 0.55 0.50 0.45 0.01 Mg 0.1 2+ 1 (m M ) Fang, Pan & Sosnick Biochemistry, 1999 Mg2+ Summary of C-domain folding 1msec collapse, 2o +some 3o, non-specific and some specific Mg2+ Uurea 0% surface buried Ieq 85% buried fast I2k I1k 98 % buried Rg = 180 Å Limiting step Consolidation of specific metal binding site 98% buried fast N 100% buried Rg = 46 Å Rg = 39 Å Rg = 38 Å Fast, local conformational search Limited by Me2+ binding site formation: Defines tertiary structure Fang, Pan & Sosnick, PNAS, 2002 Structural characterization of intermediates U Mg2+ I ? Mg2+ N B. subtilis Specificity domain of RNase P RNA Krasilnikov et al, Nature 2003 native Site-resolved information from chemical and nuclease cleavage U to I transition U C U G A C U C C G A A A 140 A A P10.1 P7 5’ 86 g C G a G 3’ 239c G C U C A 100 G A G C G A U C C U C A U A A G C U A G G P8 V1 U C U 160 A G U G C U G A G U A U C C U A A U A G A U C A 200 C U C U A A U G G U G A G A G C G U C G G A G A U G C A G U C U U 120 P11 P9 V1 G C A P10 Ieq contains J11/12 module & fourway junction T1 KE P7 5’ 86 g C G a G 3’ 239c G C U C A 100 G A G C G A U C C U C A U A A G C U A G G P8 DMS 160 A G U G C U G A G U A U C C U A TL-receptor G G A U A G G A Core G G220 A A C U A C A J11/12 module U G C A U G G A A P12 G C A C 180 G G G U G C C P10.1 J12/11 A A A G G C U G A C U C C G A A A 140 A A A G J11/12 C C C U G G A U A G G A Four-way junction P10 I to N transition U A G A U C A 200 C U C U A U G G U G A G A P12 J12/11 A G G C A U G G220 A A C G G U A G C 180 G G G U G C C A G A J11/12 C C A A C A G C C A U G G A A C G U C G G A G A U G C A G U C U U 120 P11 P9 DEPC P(r) – general shape, from small-angle X-ray scattering Experimental SAXS Crystal Structure 0.020 Rg ~ 30 Å P(r) 0.015 0.010 0.005 0.000 0 40 80 120 r (Å) Rg – overall size APS, BioCat beamline Start from the crystal structure… Modeling the intermediate with experimental constraints (SAXS, Nuclease and chemical mapping) Disrupt TL-receptor interaction Rg ~ 2 Å With Eric Westhof Baird et al. JMB 2005 Ieq N Rotate P10.1 further Rg ~ 5 Å Rg ~ 8 Å Rotate both P10.1 and P12 arm Intermediate Structure Ieq N Ieq Role of metal ions in folding cooperativity N Direct mediation of long-range contacts Indirect mediation – metal binding coupled to large-scale conformational change S-domain U Ieq N Intermediate Structure (model) Large molecules light up on EM But nothing beats a real picture… • Ribosome – 3 MD Glaeser group, UC Berkeley, data from Frank lab, Wadsworth Center • Proteasome – 750 kD Hu et al, Mol. Microbiology, 2006 • Generally accepted lower limit ~200 kD Direct imaging of ‘small’ RNAs W. Chiu & S. Ludtke, Baylor Start with molecules with known crystal structures to assess feasibility 82 kD Catalytic domain RNase P RNA Side Top (blind reconstructions) Front Ieq reconstruction When the intermediate is stably populated it can be directly imaged! Native S-domain I25 comparison with reconstruction Model vrs SAXS & CryEM reconstructions Model CryoEM SAXS Add an extension to enhance image Native Ieq with P9ext CD278 3.4 3.2 3.0 2.8 2.6 Folding behavior unchanged CD260 5.1 4.8 4.5 4.2 0.01 0.1 1 [MgCl2] (mM) 10 Ieq with P9ext Front view Top view Why doesn’t flexibility blur the image? P9 P9 P10.1 P10.1 Ieq dimensions: no salt dependence below 1 M NaCl 42 40 Not just electrostatics holding Ieq in an extended state: Defined thermodynamic well Rg (A) 38 36 34 2+ Mg -native Structure in the core? 32 0.01 0.1 [NaCl] M 1 All-atom simulations RNA structure determination using CryoEM + modeling + all-atom simulations: A rapid alternative to crystallography? . 200 UGACGAAG CACUAGA CGGA A160 UCU UGGUAA AG 190 UUC U U UGAG G C U170 GA UG GGC AGA 210 A A U AP11 G P12 150CAUCCG C C U C C A G U U G A 220U G G G P10.1AAAAAGGA180 C CAU CGCAAG G 140 130 P10 230 C G AGAGGCUGAC C P7 UUUCUGACG G C CGA P5 120 P9 110AGUC90 GCU GU UA C G P8 U GAU AAG C G U A A GA CU . . . . 100 modeling All-atom simulations Thoughts: Include “folding” to help restrict the conformational search in prediction What about folding cooperativity? • Tao Pan Acknowledgments – Nathan Baird – Haipeng Gong – Shahnawaz Zaheer • Wah Chiu, Steve Ludtke (Baylor, CryoEM) • Eric Westhof (Strasbourg, modeling) • Karl Freed (Univ. of Chicago, simulations) NIH