Oscillators * Feedback amplifier but frequency dependent feedback A f s As 1 f ( s) A( s) * Positive.
Download ReportTranscript Oscillators * Feedback amplifier but frequency dependent feedback A f s As 1 f ( s) A( s) * Positive.
Oscillators * Feedback amplifier but frequency dependent feedback A f s As 1 f ( s) A( s) * Positive feedback, i.e. βf () A () < 0 * Oscillator gain defined by A f s As 1 f ( s) A( s) * Oscillation condition at ω = ωo (Barkhausen’s criterion) Af (ωo) = L( o ) f ( o ) A( o ) f ( o ) A( o ) e j (o ) 1 ( o ) phase of f ( o ) A( o ) ECES 352 Winter 2007 Ch 13 Oscillators 1 Wien Bridge Oscillator * * * R2 R1 V0 Vi * ZS If ZP * ECES 352 Winter 2007 Based on op amp Combination of R’s and C’s in feedback loop so feedback factor βf has a frequency dependence. Analysis assumes op amp is ideal. Gain A is very large Input currents are negligibly small (I+ I_ 0). Input terminals are virtually shorted (V+ V_ ). Analyze like a normal feedback amplifier. Determine input and output loading. Determine feedback factor. Determine gain with feedback. Shunt-shunt configuration. Ch 13 Oscillators 2 Wien Bridge Oscillator Define R1 Z S R ZC R R2 V0 Vi 1 1 Z P R Z C R Z C ZS If ZP 1 1 sC R R 1 sCR Output Loading Input Loading ZS Z1 ZS V0 = 0 ZP 1 1 Z1 Z P Z S ZP ZS Vi = 0 ZP 1 Z2 Z S R ZC sC R1 sCR 1 sCR R 1 sCR sCR (1 sCR ) 2 1 ECES 352 Winter 2007 1 1 sRC sC sC Ch 13 Oscillators Z2 1 sRC sC 3 1 Wien Bridge Oscillator I1 I2 Amplifier gain including loading effects R2 R1 Vi V0 IS Z2 Z1 ZS Since I 0, V0 ZP Xo If Vo sC 1 sRC ECES 352 Winter 2007 Vo R1 so R1 R2 V0 R1 R2 R 1 2 Vi R1 R1 If Xf V0 Vo , we use I1 I 2 and Vi R1 R2 Vi V V I1 R1 Feedback factor f V0 V0 Vi I S Vi I S To get IS IS Ar 1 ZS Vi Z1 and IS R V0 Vi Z1 1 2 Vi I S R1 R1 sCR where Z1 so sCR (1 sCR ) 2 Ar R R1 sCR Ar 1 2 2 R1 sCR (1 sCR ) Ch 13 Oscillators 4 Wien Bridge Oscillator Oscillation condition P hase of f Ar equal t o 180o. It already is since f Ar 0. sCR R 1 T hen need only f Ar 1 2 R1 sCR (1 sCR ) 2 Rewrit ing R sCR f Ar 1 2 R1 sCR (1 sCR ) 2 1 1 sCR R2 R1 sCR 1 2 sCR s 2C 2 R 2 sC R2 R 1 sCR 1 R1 sCR (1 sCR ) 2 1 sCR R sCR 1 2 R1 sCR (1 sCR ) 2 1 R sCR R2 1 2 2 2 2 R1 3 1 sCR R1 1 3sCR s C R sCR 1 R 1 2 1 R1 3 j CR CR T hen imaginary t erm 0 at t he oscillat ion frequency 1 o RC T hen,we can get f Ar 1 by select ing t he resist ors R1 and R2 Gain with feedback is appropriately using Loop Gain sC Ar 1 sCR f Ar Arf Ar 1 f Ar ECES 352 Winter 2007 R R 1 1 2 1 or 2 2 R1 R1 3 Ch 13 Oscillators 5 Wien Bridge Oscillator - Example Oscillator specifications: o=1x106 rad/s Selecting for convenience C 10 nF, then from o R 1 RC 1 1 100 oC 10nF (1x106 rad / s ) Choosing R 1 10K , then since R 2 2 R 1 we get R2 2(10K ) 20K ECES 352 Winter 2007 Ch 13 Oscillators 6 Wien Bridge Oscillator Final note: No input signal is needed. Noise at the desired oscillation frequency will likely be present at the input and when picked up by the oscillator when the DC power is turned on, it will start the oscillator and the output will quickly buildup to an acceptable level. ECES 352 Winter 2007 Ch 13 Oscillators 7 Wien Bridge Oscillator * Once oscillations start, a limiting circuit is needed to prevent them from growing too large in amplitude ECES 352 Winter 2007 Ch 13 Oscillators 8 Phase Shift Oscillator IC3 VX V2 C C R * * * IC2 IR2 V1 If IC1 C I R R1 Rf I C 2 I R1 I C1 V0 Vo V V 1 o o 1 sCRR f R f R f sCR V2 V1 I C 2 Z C Vo V 1 1 o 1 sCR f R f sCR sC Vo 1 2 sCR f sCR Based on op amp using inverting input Vo V 1 I R2 2 2 Combination of R’s and C’s in R sCRR f sCR feedback loop so get additional phase Vo 1 Vo 1 IC3 I R2 IC 2 2 1 shift. Target 180o to get oscillation. sCRR f sCR R f sCR Analysis assumes op amp is ideal. V V 0 so I f V1 V I C1Z C I R1 Vo I C1 Rf Vo sCR f V1 1 Vo R R sCR f ECES 352 Winter 2007 1 1 1 Vo 3 1 1 2 1 2 sCR sCR sCR R f sCR ( sCR ) Finally Vo Rf V X V2 Vo sCRR f IC3 V 1 Vo o 2 sC sCR f sCR sCR f 3 1 1 2 sCR ( sCR ) Vo 4 1 3 sCR f sCR ( sCR ) 2 Ch 13 Oscillators 9 Phase Shift Oscillator Rearranging IC3 VX IC2 V2 V1 C C R IC1 If C IR2 R 4 1 3 sCR ( sCR ) 2 we get for the loop gain Rf IR1 VX V0 Example Oscillator specifications: o=1x106 rad/s Selecting for convenience C 10 nF, then from o R 1 3 oC 1 3RC 1 58 3 10nF (1x106 rad / s) Vo sCR f sCR f V0 1 VX 4 1 3 sCR ( sCR ) 2 jCR f 2C 2 RR f 1 4 1 3 j CR (CR ) 2 4 j 3CR CR T o get oscillations, we need the imaginary term to go to zero. We can achieve this at one frequency o so L( ) ( ) A( ) 3CR 1 1 so 0 CR 3RC T o get oscillations, we also need L(ωo ) 1 so 0 2C 2 RR f L(ωo ) 1 and substituting for ωo we get 4 R f 12(58 ) 0.67K 0 2C 2 RR f C 2 RR f 1 Rf 1 so 2 2 Note: We get 180o phase shift from op amp 4 4 3R C 12R R f 12R since input is to inverting terminal and T hen another 180o from the RC ladder. ECES 352 Winter 2007 Ch 13 Oscillators 10 Colpitts LC-Tuned Oscillator CB V0 CE Vi V0 Vi ECES 352 Winter 2007 * Feedback amplifier with inductor L and capacitors C1 and C2 in feedback network. Feedback is frequency dependent. Aim to adjust components to get positive feedback and oscillation. Output taken at collector Vo. No input needed, noise at oscillation frequency o is picked up and amplified. * RB1 and RB2 are biasing resistors. * RFC is RF Choke (inductor) to allow dc current flow for transistor biasing, but to block ac current flow to ac ground. * Simplified circuit shown at midband frequencies where large emitter bypass capacitor CE and base capacitor CB are shorts and transistor capacitances (C and C) are opens. Ch 13 Oscillators 11 Colpitts LC-Tuned Oscillator * Voltage across C2 is just V * V sC2V ZC 2 Neglecting input current to transistor (I 0), V I L IC 2 sC2V ZC 2 * Then, output voltage Vo is IC 2 Vo V I L ZL V (sC2V )(sL) V 1 s2 LC2 AC equivalent circuit * sC2V Iπ ≈ 0 sC2V V0 KCL at output node (C) Assuming oscillations have started, then V ≠ 0 and Vo ≠ 0, so 1 sC 2V g mV sC1 Vo 0 R 1 sC 2V g mV sC1 V 1 s 2 LC2 0 R 1 LC s 3 LC1C2 s 2 2 s C1 C2 g m 0 R R * Setting s = j 1 2 LC2 gm j C1 C2 3 LC1C2 0 R R ECES 352 Winter 2007 Ch 13 Oscillators 12 Colpitts LC-Tuned Oscillator * To get oscillations, both the real and imaginary parts of this equation must be set equal to zero. 1 2 LC2 gm j C1 C2 3 LC1C2 0 R R * From the imaginary part we get the expression for the oscillation frequency o C1 C2 o3 LC1C2 0 o C1 C2 LC1C2 1 CC L 1 2 C1 C2 * From the real part, we get the condition on the ratio 1 o2 LC2 of C2/C1 g 0 m R R C C2 C 1 g m R o2 LC2 LC2 1 1 2 C1 LC1C2 C2 gm R C1 ECES 352 Winter 2007 Ch 13 Oscillators 13 Colpitts LC-Tuned Oscillator Example * Given: Design oscillator at 150 MHz o 2f 2 150x106 9.4x108 rad / s Transistor gm = 100 mA/V, R = 0.5 K * Design: o C2 g m R (100m A/ V )(0.5K ) 50 C1 Select L= 50 nH, then calculate C2, and then C1 C1 C2 LC1C2 1 C2 1 LC2 C1 1 C2 1 1 (1 50) 1.13x109 F 1,130pF 2 8 2 L o C1 50nH (9.4 x10 ) C 1,130pF C1 2 23 pF 50 50 C2 ECES 352 Winter 2007 Ch 13 Oscillators 14 Summary of Oscillator Design Wien Bridge Oscillator * * Phase Shift Oscillator * * Colpitts LC-Tuned Oscillator * ECES 352 Winter 2007 Shown how feedback can be used with reactive components (capacitors) in the feedback path. Can be used to achieve positive feedback. With appropriate choice of the resistor sizes, can get feedback signal in phase with the input signal. Resulting circuit can produce large amplitude sinusoidal oscillations. Demonstrated three oscillator circuits: Wien Bridge oscillator Phase Shift oscillator Colpitts LC-Tuned oscillator Derived equations for calculating resistor and capacitor sizes to produce oscillations at the desired oscillator frequency. Key result: Oscillator design depends primarily on components in feedback network, i.e. not on the amplifier’s characteristics. Ch 13 Oscillators 15