High Energy Emissions from Gamma-ray Bursts (GRBs) Soeb Razzaque Penn State University TeV 06

Download Report

Transcript High Energy Emissions from Gamma-ray Bursts (GRBs) Soeb Razzaque Penn State University TeV 06

High Energy Emissions from
Gamma-ray Bursts (GRBs)
Soeb Razzaque
Penn State University
TeV 06
1
Gamma Ray Burst
Most violent explosion in the Universe!
Bright flash of rays outshining the
entire universe for
seconds
• Total energy output in -rays ~1049-1051 erg
• Peak photon energy ~0.1-1 MeV
Credit: Tyce DeYoung
• Non-thermal -ray spectrum
• Isotropic distribution
• Rate ~1000/year
• Extra-galactic (redshift~1-2)
TeV 06
2
GRB Prompt Emission
Highly variable -ray emission
(down to milliseconds)
 Compact source
Long bursts
Short bursts
Time (s)
Bi-modal distribution
of burst duration
 Different origins
TeV 06
3
GRB Afterglow
Late time (hours-days) emission of X-ray, UV, optical light
Feb 28
TeV 06
GRB 970228
Mar2
• Identify host galaxy  redshift
4
X
Core collapse
ISM
UV
O

Afterglow
• Isotropic-equivalent
total energy outflow
GRB
Lo  1050 - 1052 erg/s

• Initial fireball radius
1
Accretion disk
Ro  10 -10 cm
6
Relativistic
jetted outflow
7
• Initial temperature
To  1 10 MeV
TeV 06

Binary mergers
5
Gamma-ray Spectrum
• Time-averaged spectrum fitted by
broken power-laws (Band fit)
dN / dE
E
 Non-thermal
E ,b
• Origin: Internal shocks
 e-synchrotron radiation (low energy)
 Inverse Compton scattering (high energy)
• Theoretical model:
Observation:
Break energy
~0.1-1 MeV
E 
  1,   2
E
=2 for strong shock
dN
 Ee p
 e - shock acceleration
dEe
• Fast cooling:
dN
 E ( p  2) / 2 ; E  E , pk
 Synch/IC spectrum
dE
 shock accelerated e - population lose energy
completely (e to ) within dynamic time 
TeV 06
~0.1 model parameter
E   e Ek
6
Afterglow Spectrum
e -synchrotron
cooling time
longer than
dynamic time
Ambient
medium
Reverse | Forward shocks
Break frequency decreases
in time at rate depending
on constant (ISM) or wind
(density  r -2 ) ambient
medium
Sari, Piran & Narayan ’98
TeV 06
7
TeV -ray Detection Status
►
Milagrito: GRB 970417a
Milagro
 Tentative 3 detection
 Unknown redshift (less than
100 Mpc?)
 Atkins et al. ‘00
►
Tibet Array
Tibet Array:
 50-60 GRB stacked in time
coincidence with MeV
 6 significance
 Amenomori et al. ‘96
►
GRAND: GRB 971110
 Reported significance 2.7
 Poirier et al. ’03
►
MAGIC: GRB050713a
GRAND Array
MAGIC
 Flux upper limits
 Albert et al. ‘06
TeV 06
8
GeV -ray Detection
Hurley et al. ‘94
GRB 970217
GRB 941017
t<14 s
t <47 s
t < 80 s
t < 113 s
t < 211 s
TeV 06
Gonzalez et al. ‘03
•
•
•
•
Handful of GRB detection at ~GeV by EGRET
Hard spectra and delayed emission
More energy in HE component?
Need more data!
Future
detector
9
High Energy -rays from GRBs
►
Electromagnetic process: Inverse Compton (IC)
 Maximum electron energy ~100 TeV
 Maximum -ray energy ~TeV
 Inefficient in the Klein-Nishina limit
►
Hadronic Process: Photomeson  0 decay
 Maximum proton energy ~1020 eV
 Maximum -ray energy ~EeV
 In general inefficient: opacity~1 (long) <1 (short)
►
►
►
Single or multi (internal-external shocks) zone(s) emission?
High energy -rays may attenuate at the source
-rays with energy >100 GeV are attenuated in
background radiation fields (IR/CMB)
TeV 06
10
Which Model?
One zone model for MeV and HE 
Time delay by slower p cascade
and secondary radiation
Early Afterglow: >100 MeV
IC
e-sync
Boettcher & Dermer ‘98
Internal shock  MeV -rays
External shock  high energy 
Insignificant proton contribution
TeV 06
tdec
p-sync
Zhang & Meszaros ’01
Granot & Guetta ‘03
~2
11
-ray Opacity of the Universe
  e

>100 GeV -rays from GRBs suffer
attenuation in IR & CMB background

Coppi & Aharonian ‘97
High energy -ray attenuation from
GRBs may probe astrophysical model(s)
TeV 06
Baring ‘99
12
HE Photon Opacity in GRBs
Optical depth
Internal shock radius
TeV 06
Razzaque, Meszaros & Zhang ‘04
13
GRB Prompt and Delayed Spectra
Re-processed high energy -ray GRB   bkg  e ; e   bkg  e   HE
L ,iso  1052 erg/s
  2.5
z 1
  800
10-17 G
IG B-field
10-20 G
t 1 s
E , pk  1 MeV
E , ssa  10 keV
Razzaque, Meszaros & Zhang ‘04
TeV 06
14
Diffuse <TeV -rays from GRBs
GRB
0.44 Gpc-3 yr -1
  316;  t  1 s; tGRB  20 s
TeV 06
Casanova, Dingus & Zhang ‘06
15
>TeV -ray from UHE Cosmic-ray
>1 TeV -ray fluence
1051 erg GRB energy at 100 Mpc
Shock-acceleration in GRB
 ≥1020 eV cosmic-rays
Cascades on IR/CMB
background radiation
pCR  bkg  pe  / p 0 / n 
e  e TeV ; synchrotron
 Delayed emission ~day
Patchy IGM (80% voids w. B10-15 G, 20%
w. B~10-11 G) TeV Fluence ~2% of energy
in GZK protons
Waxman & Coppi ’96
Dermer ’02
Armengaud, Sigl & Miniati ‘06
TeV 06
16
GRB Fireball Evolution
 n, f   p , f   ~ 300
 ~1
Coulomb
e

p
Baryon loading
Compton
e
n
nuclear
p
n
Initial fireball
n  p
e
n

p
   e e  
 
pn    e e  
  0  

n, f  p , f
rel  1
Inelastic p-n
scattering
 np   
Initial fireball
TeV 06
coasting fireball

Derishev, Kocharovsky & Kocharovsky ‘99
n
e
p

n-p decouples17
n-p Decoupling in Short GRB
o  nn' / n'p
Lkin  1050 erg/s
R0  106 cm
n-p Decoupling
Radius Rnp~RTh
TeV 06
Razzaque & Meszaros ‘06
18
n-p Decoupling Gamma-rays
• Only photons produced at photosphere may escape un-attenuated
• 0 decay photon energy E
Probability
'
70 cm
 p, f
10 GeV (LGRB)
MeV~ 
60 GeV (SGRB)
'
P 0   np
( RTh )  Rnp / RTh  0.4
Bahcall &
Meszaros ‘00
Razzaque &
Meszaros ‘06
• Flux from an SGRB at z=0.1
N , 0 
P 0 Lˆ
4 DL2 p , f m p c 2
 2 106 cm-2s-1
• GLAST : Too small effective area
• MILAGRO
TeV 06
Aeff  5105 cm2
Energy below threshold?
19
Short GRB Model Flux Predictions
Model parameters Lkin  10Liso ;  =316 ; o  nn' / n'p  10
GRB
Distance
(z)
L_iso
(erg/s)
Duration
(s)
E
(GeV)
Flux
(/cm2/s)
040924
050509b
051103
051221
0.859
0.225
0.001(?)
0.547
1.48E52
8.6E48
2.6E47
1.7E51
0.6
0.128
0.17
1.4
22
59
36
22
9.7E-6
2.3E-7
8.6E-4
2.3E-6
Data credits: Pablo Saz Parkinson
Predictions
• These are still below detection
• Need bigger detectors with lower threshold
TeV 06
20
GeV Gamma-rays from Short GRB
o  nn' / n'p
E ,b  2.82To ( R / Ro ) p , f
   b  e
0
      e
 IC
scattering
Ri  22p, f c(t / ms)
TeV 06
E ,c  mec 2 p , f
Razzaque & Meszaros ‘06
21
Late X-ray Flares in GRB
Various models:
GRB
•
•
•
•
•
X-ray flare
Underlying afterglow
light curve
Burrows et al. ’05, Zhang et al. ‘05
Refreshed shocks
IC from reverse shock
External density bumps
Multiple component jet
Late central engine activity
Main constraints:
sharp rise and decline
t -0.8
GeV-TeV  rays:
IC scattering of x-ray
photons by external forward
shocked electron
Wang, Li & Meszaros ‘06
TeV 06
22
HE  from Old GRB Remnants
HESS J1301-631
Age: 1.5×104 yr ; Distance: 12 kpc
0 decay
model
≤10’
TeV 06
10’≤≤25’ 25’≤≤1o
Atoyan, Buckley & Krawczynski ‘06
23
HE  from Old GRB Remnants
GRB jet: p   +n  neutron decay: n   e -
e - CMB  e - HETeV
TeV 06
W49B
Ioka, Kobayashi & Meszaros ‘04
24
Conclusion
►
►
►
►
GRBs are the brightest MeV -ray transient sources in the
universe
GeV and TeV (tentative) -rays have been observed from
a few bursts
Both Leptonic and Hadronic models may account for GeV
data  Need more data!
Short GRBs may produce ~100 GeV -rays
 Less luminous than long GRBs but much nearer
 Less attenuation in background radiation
►
►
TeV detection in current detectors requires luminous and
nearby GRBs
Need more GeV-TeV data  need bigger detector!
TeV 06
25