(RMO2C – 2) 60-GHz PA and LNA in 90-nm RF-CMOS Terry Yao1, Michael Gordon1, Kenneth Yau1, M.T.
Download ReportTranscript (RMO2C – 2) 60-GHz PA and LNA in 90-nm RF-CMOS Terry Yao1, Michael Gordon1, Kenneth Yau1, M.T.
(RMO2C – 2) 60-GHz PA and LNA in 90-nm RF-CMOS Terry Yao1, Michael Gordon1, Kenneth Yau1, M.T. Yang2 and Sorin P. Voinigescu1 1University of Toronto 2TSMC Outline • • • • • • Motivation mm-Wave Actives and Passives 60-GHz LNA in 90-nm CMOS 60-GHz PA in 90-nm CMOS Conclusions Acknowledgments 60-GHz PA and LNA in 90-nm RF-CMOS 2 Motivation • 60-GHz band: high atmospheric attenuation 7-GHz of unlicensed spectrum 57-64GHz • Applications: high data-rate wireless transmission mm-wave sensors • Smaller on-chip passives higher integration single-chip transceivers • Technology scaling enables low-cost 60-GHz radio SoCs in silicon 60-GHz PA and LNA in 90-nm RF-CMOS 3 60-GHz System Overview • Classical radio architectures: simple, robust at mm-waves • Crucial front-end blocks: VCO, LNA, PA Digital Rx BPF LNA IF Downconvert RF Downconvert IF Amp ADC 90° LOI F IF Upconvert T/R Antenna Switch BPF ADC LORF DAC PA LOI F 90° Tx RF Upconvert 60-GHz PA and LNA in 90-nm RF-CMOS DAC 4 mm-Wave Transistor Performance • Measured gain of 90-nm n-MOSFETs (~8dB) is comparable to that of SiGe HBTs (~10dB) • Cascode exhibits higher gain than CS/CE stages; benefits of MOS cascode diminish at >60GHz 60-GHz PA and LNA in 90-nm RF-CMOS 5 Key Biasing Ideas for LNAs and PAs • Peak fT, fMAX and NFMIN characteristic current densities largely unchanged across technology nodes and foundries • NFMIN (0.15mA/µm) and peak fMAX (0.2mA/µm) are close LNAs simultaneously optimized for noise and high gain • In CMOS PAs optimum current swing when biased at 0.3mA/µm 10% degradation in fMAX Optimum Current Swing Bias 60-GHz PA and LNA in 90-nm RF-CMOS 6 Key Enabler: Lumped mm-Wave Inductors and Transformers • Reduced form factor of on-chip passives at mmwaves • Spiral inductors preferred over CPW or µ-strip T-lines • Vertically stacked, Xfmr measured up to 94GHz • Inductors and Xfmrs modeled using ASITIC® >90% accuracy 1:1 vertically stacked transformer in 90-nm CMOS Measured transformer power transfer up to 94GHz 60-GHz PA and LNA in 90-nm RF-CMOS 7 Outline • • • • • • • Motivation State-of-the-Art mm-Wave Actives and Passives 60-GHz LNA in 90-nm CMOS 60-GHz PA in 90-nm CMOS Conclusions Acknowledgements 60-GHz PA and LNA in 90-nm RF-CMOS 8 mm-Wave LNA Design • Cascode offers best isolation, low-to-moderate noise, ease of matching, good linearity, high gain; drawback is higher supply voltage • Methodology based on: Voinigescu et al., JSSC (Sept. ’97) LS Zo T (cascode) LG 1 LS 2 Cin 1 Z in Z o j ( LG LS ) jC in 2 fT RP G f Zo VDD RP L C VOUT VDD VIN ZSOPT=ZO ZIN=ZO 60-GHz PA and LNA in 90-nm RF-CMOS LG Q2 Q1 LS 9 60-GHz LNA in 90nm CMOS • 2-stage cascode biased at 0.2mA/µm (gain, linearity and noise) • Input/output matched to 50Ω (accounting for CPAD) • No source degeneration in 2nd stage for gain • LM1 forms artificial t-line with (Cgs2+Csb2) and (Cdb1+Cgd1) VDD= 1.5 V LD1= 70 pH Q2 RFOUT Q4 CC1= 150 fF LM1= 70 pH LD2= 110 pH CC2= 100 fF LM2= 90 pH RFIN LG = 170 pH Q1 LS1= 60 pH Q3 20 k Q1,Q2:30x1µm Q3,Q4:40x1µm VG LM 1 1 LD1Q Z o1 Z Q1,load Z o1 Z Q 2,in C gs 2 Csb2 gm2 1 gm2 ro2 60-GHz PA and LNA in 90-nm RF-CMOS 10 60-GHz LNA Fabrication • 90-nm RF-CMOS with 9-metal layers: fT/fMAX=140/170GHz (Wf=2µm) 350µm fT/fMAX=120/200GHz (Wf=1µm) • Thick top metals M8 & M9 • Inductors: high Q, small area • 2pF MIM capacitors for decoupling • Large metal plane and ample substrate contacts • 350 x 400 µm2 400µm Active area: ~180 x 300 µm2 60-GHz PA and LNA in 90-nm RF-CMOS 11 60-GHz LNA Measurements • Repeatability across dies • Peak gain = 14.6dB (58GHz) • Isolation > 32dB • IIP3 = -6.8dBm (58GHz) • NF = 4.5dB (simulated) (confirmed by cascode meas. to 26GHz) 60-GHz PA and LNA in 90-nm RF-CMOS 12 LNA Comparison with State-of-the-Art FoM LNA G IIP 3 f OIP 3 f [ITRS] ( F 1) P ( F 1) P LNA Technology f G NF IIP3 DC Power Area FOM 160/160 GHz fT/fMAX SiGe HBT [1] 65GHz 14dB 10.5dB (sim) -6dBm 34mW @ 2.5V 0.3 x 0.4 mm2 1.2 200/290 GHz fT/fMAX SiGe HBT [2] 61.5GHz 15dB 4.5dB (meas) -8.5dBm 10.8mW @ 1.8V 0.6 x 0.9 mm2 13.8 90/130 GHz fT/fMAX 130nm CMOS [3] 60GHz 12dB 8.8dB (meas) -0.5dBm 54mW @ 1.5V 1.3 x 1.0 mm2 2.1 140/170 GHz fT/fMAX 90nm CMOS [4] 58GHz 14.6dB 4.5dB (sim) -6.8dBm 24mW @ 1.5V 0.35 x 0.4 mm2 8.1 [1] M. Gordon et al., SiRF ’06. [2] B. Floyd et al., ISSCC ’04. [3] C. Doan et al., ISSCC ’04. [4] This work. • First 60-GHz LNA in 90-nm CMOS • Higher gain, lower NF, lower power dissipation, smaller area than 130nm 60G LNA • Design scalable in frequency and ported to STM’s 90nm CMOS technology (60GHz receiver submitted to CSICS 2006) 60-GHz PA and LNA in 90-nm RF-CMOS 13 Outline • • • • • • • Motivation State-of-the-Art mm-Wave Actives and Passives 60-GHz LNA in 90-nm CMOS 60-GHz PA in 90-nm CMOS Conclusions Acknowledgements 60-GHz PA and LNA in 90-nm RF-CMOS 14 Key mm-Wave PA Design Ideas • Class A for maximum linearity • Linear voltage swing decreases with each new node FoM PA Pout G PAE f 2 [ITRS] I swing (VDD VDS , sat ) OP1dB 4 • Current swing constant across 1 1 1 1 nodes • Measured breakdown >3V OP1dBcascade OP1dB1 G2 OP1dB2 G3 OP1dB3 60-GHz PA and LNA in 90-nm RF-CMOS 15 60-GHz PA in 90nm CMOS • Class A, 3-stage CS topology • Input/output match 50 • Branch currents scaled for optimal linearity VDD= 1.5 V LD1= 105 pH LD2= 105 pH CC1= 33 fF RF IN Q1 Input Match LS LG2 = 65 pH VDD= 1.5 V LS1= 96 pH 5k LS2= 60 pH Q2 5k VG Q1 : 32 x 1 µm 1-Stage L-Match at Output LD3= 105 pH CC3= 80 fF CC2= 33 fF LG3 = 65 pH LG1 = 65 pH Zo T VDD= 1.5 V LS3= 60 pH VG Q2 : 36 x 1 µm 60-GHz PA and LNA in 90-nm RF-CMOS Q3 RF OUT Interstage Match and Degeneration Q3 : 40 x 1 µm 16 350µm 60-GHz PA Fabrication Active area: ~350µm x 160µm 430µm • Same 90-nm RF-CMOS process technology as 60-GHz LNA • Spiral inductors for matching high area efficiency 60-GHz PA and LNA in 90-nm RF-CMOS 17 60-GHz PA Measurements • Repeatability across dies • Peak gain = 5.2dB (60GHz) • 3-dB BW > 13GHz (52-65GHz) • S22, S11 both matched (60-65GHz) • OP1dB = 6.4dBm, Psat = 9.3dBm (60GHz) • Maximum linearity and gain occur at 0.28mA/µm 60-GHz PA and LNA in 90-nm RF-CMOS 18 60-GHz PA Measurements • Output compression proportional to supply voltage • Maximum efficiency = 21.4%; maximum PAE = 7.4% 60-GHz PA and LNA in 90-nm RF-CMOS 19 60-GHz PA Performance Comparison FoM PA Pout G PAE f 2 [ITRS] PA Technology f G Psat P1dB, out PAE Area Topology FoM 200/290 GHz fT/fMAX SiGe HBT [1] 60GHz 10.8d B 16dBm 11.2dBm 4.3% 2.1x0.8mm2 2-stage CE (D) 74.3 200/290 GHz fT/fMAX SiGe HBT [2] 77GHz 17dB 17.5dBm 14.5dBm 12.8 % 1.35x0.45mm2 4-stage CE (S) 2125 200/290 GHz fT/fMAX SiGe HBT [3] 77GHz 6.1dB 12.5dBm 11.6dBm 3.5% 2.1x0.75mm2 2-stage CE (D) 9.1 65 GHz fMAX 0.18µm CMOS [4] 24GHz 7dB 14.5dBm - 14.5 % 0.7x1.8mm2 2-stage cascode (S) 11.7 84 GHz fMAX 0.18µm CMOS [5a] 27GHz 17dB 14dBm - 8.2% 1.2x1.7mm2 3-stage cascode (S) 74.7 84 GHz fMAX 0.18µm CMOS [5b] 40GHz 7dB 10.4dBm - 2.9% 1.2x1.7mm2 3-stage cascode (S) 2.6 170 GHz fMAX 90nm CMOS [6] 60GHz 5.2dB 9.3dBm 6.4dBm 7.4% 0.35x0.43mm2 3-stage CS (S) 7.5 *FoM calculated using Psat and max. PAE. (D) – Differential, (S) – Single-Ended [1] B. Floyd et al., ISSCC ’04. [2] A. Komijani et al., CICC ’05. [3] U. Pfeiffer et al., RFIC ’04. [4] A. Komijani et al., CICC ’04. [5] H. Shigematsu et al., MTT ’05. [6] This work. • Highest frequency PA in CMOS • Lowest area consumption • Comparable to [3, 5b] in gain and Psat 60-GHz PA and LNA in 90-nm RF-CMOS 20 Conclusions • First 60-GHz LNA and PA in 90nm RF-CMOS • Scaling from 130nm to 90nm better performance: Lower noise (comparable to best SiGe HBT LNAs) Lower power dissipation Higher gain (in LNAs) Reasonable output power and gain for PA • Inductors and Xfmrs compact layout (low cost) • 6-GHz topologies and design methodologies can be extended to mm-waves and ported between CMOS foundries without redesign 60-GHz PA and LNA in 90-nm RF-CMOS 21 Acknowledgments • Gennum Corporation, NSERC and Micronet for funding • OIF and CFI for equipment grants • TSMC for chip fabrication • CMC for CAD tools 60-GHz PA and LNA in 90-nm RF-CMOS 22 Thank You. Questions… 60-GHz PA and LNA in 90-nm RF-CMOS 23 60-GHz LNA Measurements • LNA OP1dB at 58GHz = -0.5dB 60-GHz PA and LNA in 90-nm RF-CMOS 24 State-of-the-Art mm-wave LNAs and PAs in Silicon Block/ System LNA PA Frequency (GHz) Technology Reference 52, 65 SiGe (fT/fMAX=150/160GHz) M. Gordon et al. (ESSCIRC 2004, SiRF 2006) 61.5 SiGe (fT/fMAX=200/290GHz) B. Floyd et al. (ISSCC, 2004) 60 0.13µm CMOS C. Doan et al. (ISSCC, 2004) 77 SiGe (fT/fMAX=220/250GHz) B. Dehlink et al. (CSICS, 2005) 60 SiGe (fT/fMAX=200/290GHz) B. Floyd et al. (ISSCC, 2004) 77 SiGe (fT/fMAX=200/290GHz) A. Komijani et al. (CICC, 2005) 77 SiGe (fT/fMAX=200/290GHz) U. Pfeiffer et al. (RFIC, 2004) 24 0.18µm CMOS A. Komijani et al. (CICC, 2004) 27 0.18µm CMOS H. Shigematsu et al. (MTT, 2005) 40 0.18µm CMOS H. Shigematsu et al. (MTT, 2005) • Potential of mainstream CMOS for mm-wave LNAs shown in C. Doan et al. (ISSCC, 2004) • Benefits of scaling on mm-wave LNA performance? • SiGe has a clear advantage over CMOS in PA implementations due to higher breakdown voltage larger output power • No CMOS PAs > 40GHz 60-GHz PA and LNA in 90-nm RF-CMOS 25