Quest in low-energy QCD Are there exotics beyond meson(qq) /baryon (qqq) ? Sakata Model (p, n, L) 6 quark model I II III u c t up Gell-Mann (u,d,s) q q s d down b strange flavor top color (R,G,B) bottom New Hadrons(Exotics) Ordinal Hadrons meson charm q=u, d,
Download ReportTranscript Quest in low-energy QCD Are there exotics beyond meson(qq) /baryon (qqq) ? Sakata Model (p, n, L) 6 quark model I II III u c t up Gell-Mann (u,d,s) q q s d down b strange flavor top color (R,G,B) bottom New Hadrons(Exotics) Ordinal Hadrons meson charm q=u, d,
Quest in low-energy QCD Are there exotics beyond meson(qq) /baryon (qqq) ? Sakata Model (p, n, L) 6 quark model I II III u c t up Gell-Mann (u,d,s) q q s d down b strange flavor top color (R,G,B) bottom New Hadrons(Exotics) Ordinal Hadrons meson charm q=u, d, s, c, b, t baryon Tetra-quark Penta-quark Molecule q q q QCD just require hadrons to be colorless, and allow exotics. Such exotic states exist ? 2 Existence of such exotics have long been discussed since the birth of the quark model. Exotic Charmonium-like Spectroscopy Heavy quarkonium is an ideal tool to study “mesons”. • Below DD threshold; – All charmonium states have been observed. – Spectra are in good agreement with naïve quark model VQCD 4 S kr 3 r However, • Above DD threshold; Observed states DO NOT fit to the predicted spectrum. cc states cannot be JPC• Charged Z (4430), Z (4050), Z (4250) We do not understood yet how hadrons are formed from QCD. 4 B Factories High luminosity e+e- collider and high performance 4p detectors are essential for the “bonus” discoveries. Data taking not only on U(4S) but also on U(nS) [n=1,2,3,5] and continuum. • Good acceptance • Good tracking • Good Particle ID (e,m,p,K,p) • Minimum-bias triggers 5 Production of cc in B Factories B factories can produce charmonium (-like) states in four ways. 6 XYZ at B Factories State Mass (MeV) Width (MeV) Decay Production Ys(2175) 2175±8 58±26 ff0 ISR X(3872) 3871.84±0.33 <0.95 J/ypp, J/yg B decay X(3872) 3872.8 +0.7/-0.6 3.9 +2.8/-1.8 D*0D0, J/yw B decay Y(3915) 3915±4 17±10 J/yw gg Z(3940) 3929±5 29±10 DD gg X(3940) 3942±9 37±17 DD* Double-charm Y(3940) 3942±17 87±34 J/yw B decay Y(4008) 4008 +82/-49 226 +97/-80 J/ypp ISR Z(4051)+ 4051 +24/-43 82 +51/-28 pcc1 B decay X(4160) 4156±29 139 +113/-65 D*D* Double-charm Z(4248)+ 4248 +185/-45 177 +320/-72 pcc1 B decay Y(4260) 4264±12 83±22 J/ypp ISR X(4350) 4350 +4.7/-5.1 13 +18/-14 J/yf gg Y(4350) 4361±13 74±18 y’pp ISR Z(4430)+ 4433±5 45 +35/-18 y’p B decay Y(4660) 4664±12 48±15 y’pp ISR Yb(10890) 10889.6±2.3 54.7 +8.9/-7.6 ppΥ(nS) e+e- annihilation Zb(10610) 10608.4±2.0 15.6±2.5 (Υ(nS) or hb) p Υ(5S) /Yb decay Zb(10650) 10653.2±1.5 14.4±3.2 (Υ(nS) or hb) p Υ(5S) /Yb decay Tetraquark u c “Di-quark” c u D(*)D(*) Molecule π c c u u Hybrid c c g 7 Charmonium-like exotics 8 X (3872) Discovery by Belle in 2003, followed by D0, CDF, BaBar. (90%CL) More recently, also by LHCb, CMS. 9 Properties of X(3872) • C = +1 X(3872) J/y g, J/y r seen Q • JPC = 1++ or 2-+ Q Angular distribution Q • I=0 No charged partner found so far isospin violating decay X(3872) J/y r (p+p-) around D*D MX M *0 M 0 0.12 0.35 MeV • Mass just D D MX MD* MD 7.74 0.35 MeV • Possible interpretation • Conventional cc : cc1(23P1) for 1++, hc2(11D2) for 2-+ • Exotics: • D*0 D0 molecule : [cq ][c q] • Tetra-quark : [cq][c q ] D*0 D0 molecule Tetra-quark 10 JPC of X(3872) CDF(780pb-1) PRL 98, 132002 (2007) 1++ 2-+ 1-0++ Belle (711fb-1) PRD 84, 052004 (2011) BaBar (420fb-1) PRD 82, 011101 (2010) • All JPC values other than 1++ or 2-+ are ruled out with high confidence. • Need more statistics to distinguish 1++ vs 2-+. X(3872) in B+ vs B0 decays PRD 84, 052004 (2011) DM X M(X in B K X) Belle (711fb-1) M(X in B 0 K 0 X) [0.71 0.96 0.19]MeV B+→K+X(3872) Prediction by a tetra-quark model; DM ~ 8 MeV Maiani et al PRD71, 014028 B0→K0X(3872) By combining: M X (3872) [3871.85 0.27 0.19]MeV X (3872) 1.2MeV (90% C.L.) 12 X(3872) at LHC CMS (40 pb-1,√s = 7 TeV) R CMS PAS BPH-10-018 ( pp X (3872) K ) Br(X(3872) J /y p p ) ( pp y (2S) K ) Br(y (2S) J /y p p ) 0.087 0.017 0.009 LHCb (34.7 pb-1,√s = 7 TeV) arXiv: 1112.5310 ( pp X(3872) K ) Br(X(3872) J /y p p ) [4.7 1.1 0.7] nb M X (3872 ) [3871.95 0.48 0.12]MeV Looking forward to results with >1fb -1 data. 13 Y(4260) / Y(4005) • BaBar found Y(4260) in ISR e+e- → J/y p+ p- (2005) • CLEO-c/CLEO III/Belle confirmed, and Belle found also enhancement near 4005 MeV. • New BaBar result Belle (548fb-1) – Mass/width M 4244 5 4 MeV = 114 +16 -15 7MeV PRL99,182004 (2007) – but, does not confirm Y(4005). Stay tuned for Belle result with the full data set. 14 Y(4360) / Y(4660) • BaBar found Y(4360) in ISR e+e- → y(2S) p+ p- (2005) • Belle confirmed Y(4360) and found another peak Y(4660) • New BaBar results confirms Y(4660) [QNP2012/Charm2012] BaBar 520fb-1, preliminary Belle 673fb-1 PRL99, 142002 (2007) (unit: MeV) M (Y(4360)) (Y(4360)) M (Y(4660)) (Y(4660)) Belle (673fb-1) 4361 ± 9 ± 9 74 ± 15 ± 10 4664 ± 11 ± 5 48 ± 15 ± 3 BaBar (520fb-1) 4340 ± 16 ± 9 94 ± 32 ± 13 4669 ± 21 ± 3 104 ± 48 ± 10 15 Z(4430)+, Z (4050)+, Z(4250)+ by Belle • Belle found Z(4430)+ in BK p+ y’ decays. – One-dimensional fit on y’p+ distribution after K*(890) /K*(1430) vetos. PRD80, 031104(2009) – Confirmed by analysis with a full Dalitz plot. 15 19 12 13 M (4443 (107 86 43 74 56 )MeV/c 2 PRD80, 031104(2009) )MeV M2(ψ’π+) • Belle found also another two states, Z(4050)+ & Z(4250)+, in BK p+ cc1 decays. 2 M1 (405114 20 41 )MeV/c M 2 (424844 29 1 (82 21 17 2 (177 54 39 47 22 )MeV Their minimum quark content must be exotic: 180 35 316 61 )MeV/c 2 )MeV cc ud 16 PRD79, 112001(2009) Z+ (cont’d) Belle • BaBar does not confirm Z+’s – Z(4430)+ search in BKp+y’ – Z(4050)+/Z(4250)+ search in BKp+cc1 – Excess is < 2 w.r.t. Kp reflection. BaBar • But, do not rule out Belle’s results. – UL is statistically compatible with Belle results Br(B 0 Z K ) Br(Z p y ' / cc1) BaBar U.L. Belle Z(4430)+ < 3.1 (95%CL) Z(4050)+ < 1.8 (90%CL) 4.1 ± 1.0 ± 1.4 3.7 3.0 1.5 0.8 1.6 Z(4250)+ < 4.0 (90%CL) 4.0 2.3 0.9 PRD85, 052003(2012) 19.7 0.5 Note: In the BaBar analyses, Z+ amplitudes are added Incoherently, therefore, interference effects are not included. They are included in the Belle analyses (see S.Olsen’s summary talk at CHARM2012, and also backup) . • Looking forward to the results from LHCb w/ full 2011 data set !Better statistics than Belle + BaBar ? (ref. A.A.Alves Jr. @ CHARM2012) 17 Bottomonium-like exotics 18 Nature of (5S) • Unexpectedly large rate for U(5S)→U(nS)p+p- (n=1,2,3). (MeV) PRL100,112001(2008) PRD82,091106R(2010) 102 • Y(4260) with anomalous (Y(4260) →J/yp+p-) line shape of Yb (5S) Exotic Yb just nearby Y(5S) ? • CLEO observed e+e- → hc p+p- near Y(4260). e+e- → hb p+p- near Yb ? Up+p- peak shifted by 2 w.r.t. U(5S) 19 Search for hb • Use the missing mass in the reaction; e+e- → “U(5S)” → X p+p- 2 2 Mmiss PU(5S) Pp2p After background subtraction hb(2P) hb(1P) Mass; M[hb (1P)] 9898.2 1.1 1.0 1.0 1.2 M[hb (2P)] 10259.8 0.6 MeV/c 2 1.4 1.0 MeV/c 2 P-wave Hyperfine splittings; DM HF [cbJ (1P) hb (1P)] (1.7 1.5) MeV/c 2 2 DM HF [cbJ (2P) hb (2P)] (0.51.6 1.2 ) MeV/c 20 Exotic Production Mechanism Unusually large production rate! spin-flip 0.07 [U(5S) hb (nP)p p ] 0.46 0.080.12 for hb (1P) [U(5S) U(2S)p p ] 0.77 0.080.22 for hb (2P) 0.17 No spin-flip “(5S)” → (nS)p+p- “(5S)” → hb(nP)p+p- Intermediate resonance ? Charged Bottomonium-like ? cf) Charm: B → y ‘ pK B → cc1 pK Z+(4430) Z+(4050), Z+(4250) 21 Charged Bottomonium-like Zb+ in (nS)p+ Two peaks at the same positions in the 3 modes. (1S) (2S) (3S) Two resonances: Zb+(10510), Zb+(10560) 22 hb (1P, 2P) p+ phb(1P) p+ hb(2P) p+ M miss (p ) to look at hb p Fit with A(Zb1 ) A(Zb 2 ) A(NR) Two peaks at the positions same as (nS)pp 23 Zb(10610) & Zb(10650) M=10608.42.0 MeV M=10653.21.5 MeV =15.62.5 MeV =14.43.2 MeV 24 Nature of Zb+ B*B and B*B* molecule interpretation Zb+(10510) [Bondar et al. arXiv:1105.4473] • • • • • • Masses just above B*B and B*B* Similar production rate for Zb1 and Zb2 Similar decay width (Zb1)~(Zb2) +(10560) Z b Why U(5S)→hbp+p- is not suppressed Relative phase: ~0° for Up and ~180° for hbp JP=1+ assignment (0± forbidden, 1-, 2± disfavored at ~3) ū Bū B*- Other interpretation • Tetra-quark: Karliner-Lipkin (arXiv: 0802.0649), A. Ali, C. Hambrock, W. Wang (PRD85, 054011(2012)) • Coupled channel resonance: Daniklin et al. (arxiv:1106.1552) and mode,… • Cusp: Bugg (arXiv: 1105.5492) 25 Exotics in light flavors ? • e+e- ISR : Y(4260) p+ p- J/y; Y(4360) p+ p- y’ Y(2175) p+ p- f (f0 f) seen by BaBar, Belle, BES III • gg (two-photon) X(3915) w J/y; X(4350) f J/y What about wf,ff? 26 gg VV(wf, ff, ww) Belle • 870 fb-1 near U(nS)[n=1,…5] • 4 charged tracks + p0; fK+K-, wp+p-p0 • Signals are extracted by fitting distribution for each M(VV) bin. hc cc0 cc2 • Obvious structures in low M(VV) region. – JP of the structure is extracted from angular distributions. arXiv: 1202.5632, to appear in PRL 27 Summary • High luminosity e+e- B factories have brought discoveries of many “exotic” hadrons (unexpected bonus of the B factories). • Need more statistics to elucidate their properties (spin, parity, decay modes etc.) – Super-KEKB/Belle II and INFN SuperB will improve our knowledge. • Possibility to increase c.m.s energy to cover the bottom flavor region. – Looking forward to results from LHC experiments as well. This is also the area where (super) B factories and LHC communities can work together ! 28 Apology: Many recent results not covered by this talk Charmonium(-like) • • • • • • • Belle: Search for U(2S)ccJ/hc/X/Y + g • Belle: Search for cbJ J/yJ/y, J/yy’, yy • Belle: Observation of U(1S), U(2S) decay into light hadrons • LHCb: Search for X(4140) and X(4274) Belle: Evidence of 13D2 = y2 in cc1g Belle: Search for C=-1 state in J/y h Belle: Search for X(3872) and y2 in cc2g Belle: Search for ZC+ in BJ/y pK BaBar: Search for gg hcp+pBaBar: Confirmation of X(3915) by gg J/y w Bottomonium(-like) • • • • • • • • ATLAS/D0: Observation of 33PJ = cb(3P) Dobbs et al (CLEO data), excess in radiative decay of U(2S) BaBar: Search for U(3S) hb p+pApology if I miss any… Belle: Evidence of 21S0=hb(2S) by hb(2P)hb(2S)g Apology for missing reference. Belle: Confirmation of hb(1S) by hb(1P)hb(1S)g Belle: Confirmation of 13DJ=U(1D) First meas. of the width The best precise mass meas. Belle: Search for U(2S) hU(1S), U(2S)p0U(1S) Belle: Search for U(5S) hU(1S,2S), U(5S)h’U(1S) 29 Backup 30 Search for hb • Use the missing mass in the reaction; e+e- → “U(5S)” → X p+p- 2 2 Mmiss PU(5S) Pp2p U(1S) U(2S) U(3S) hb(1P) hb(2P) U(1S) Accurate background subtraction using high statistics data ! 31 (nS)→(nS) pp M 2 (U(ns) p ) max PRL 108, 122001 (2012) GeV 2 /c 4 (1S) (2S) (3S) M 2 (p p ) GeV 2 /c 4 • Two horizontal bands in (nS) p Charged ! • Dalitz plot amplitude analysis; fitted with A A(Zb1 ) A(Zb2 ) A( f 0 (980)) A( f 2 (1275)) A(NR) 32 Search for Charged X PRD 84, 052004 (2011) Belle (711fb-1) B0→K- p+p0 J/y Br(B KX ) Br(X r J /y ) 4.2 106 for K K 6.1 106 for K K 0 for 3850 −3890 MeV (90%C.L.) B+→K0 p+p0 J/y cf) Br(B K X(3872)) Br(X(3872) p p J /y ) [8.63 0.82 0.52] 106 Mbc (GeV) M (J/y p+ p0) (GeV) 33 Evidence of 13D2 = y2 34 Charged + Z in p cc1 system? constr. interf BaBar (Gradl) Belle PRD 78, 072004 (2008)