Three-body Force Effects on the Properties of Neutron-rich Nuclear Matter Zuo Wei Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China I.
Download ReportTranscript Three-body Force Effects on the Properties of Neutron-rich Nuclear Matter Zuo Wei Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China I.
Three-body Force Effects on the Properties of Neutron-rich Nuclear Matter Zuo Wei Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China I. Bombaci, G.F.Burgio, U. Lombardo, H.-J. Schulze, A. Lejeune, J. F. Mathiot, B. A. Li , A. Li, Z. H. Li, L.G.Cao, C.W.Shen, J.M.Dong, W. Scheid NN2012, Hyatt Regency, San Antonio, Texas, USA May 27 – June 2, 2012 Outline: 1. Introduction (Motivation) 2. Theoretical approaches 3. Results 4. Summary and conclusion Properties of Asymmetric Nuclear Matter Review Paper: BA Li, LW Chen, CM Ko, Phys. Rep. 464 (2008)113 Theoretical Approaches • Skyrme-Hartree-Fock • Relativistic Mean Field Theory • Relativistic Hartree-Fock • • • • • Variational Approach Green’s Function Theory Brueckner Theory Dirac-Brueckner Approach Effective Field Theory Symmetry energy predicted by various many-body theories ---- Extremely Large uncertainty at high densities! ? C. Fuchs and H. H. Wolter, EPJA30(2006)5 BHF Greens function Variational Dieperink et al., PRC67(2003)064307. Most recent results from BHF Z.H. Li, U. Lombardo, H.-J. Schulze, Zuo et al., PRC74(2006)047304 Bethe-Goldstone Theory • Bethe-Goldstone equation and effective G-matrix G( , ; ) vNN vNN k1k 2 k1k2 Q(k1 , k2 ) k1k2 (k1 ) (k2 ) i → Nucleon-nucleon interaction: G( , ; ) vNN v2 V3eff ★ Two-body interaction :v2AV18 (isospin dependent) ★ Effective three-body force V eff 3 → Pauli operator : Q(k1 , k2 ) 1 nk1 1 nk2 → Single particle energy : (k ) 2k 2 /(2m) U (k ) → “Auxiliary” potential : continuous choice U (k ) n(k ' ) Re kk' G[ (k ) (k ' )] kk' A k' Confirmation of the hole-line expansion of the EOS under the contineous chioce (Song,Baldo,Lombardo,et al,PRL(1998)) Nuclear Matter Saturation Problem The model of rigid nucleons interacting via realistic two-body forces fitting invacuum nucleon-nucleon scattering data can not reproduce the empirical saturation properties of nuclear matter (Coestor band, Coestor et al., PRC1(1970)765) Microscopic Three-body Forces • Based on meson exchange approach • Be constructed in a consistent way with the adopted two-body force---------microscopic TBF ! • Grange et.al PRC40(1989)1040 Z-diagram , N (b) (c) N N R , , N N , N N , , N N , , N (a ) , , , , R Effective Microscopic Three-body Force • Effective three-body force V eff 3 eff 3 V r ', r ' r , r 1 2 1 2 1 Tr d r3d r3 ' n* r3 ' 1 r13 '1 r23 ' 4 n W3 r1 ' , r2 ' , r3 ' r1 , r2 , r3 n r3 1 r13 1 r23 → Defect function: (r12)= (r12) – (r12) ★Short-range nucleon correlations (Ladder correlations) ★Evaluated self-consistently at each iteration Effective TBF ---- Density dependent Effective TBF ---- Isospin dependent for asymmetric nuclear matter EOS of SNM & saturation properties TBF is necessary for reproducing the empirical saturation property of nuclear matter in a non-relativistic microscopic framework. Saturation properties: (fm-3) EA (MeV) K (MeV) 0.19 –15.0 210 0.26 –18.0 230 W. Zuo, A. Lejeune, U.Lombardo, J.F.Mothiot, NPA706(2002)418 TBF based on Bonn B interaction Li ZengHua,H. J. Schulze, U. Lombardo, Wei Zuo, PRC 77, 034316 (2008) Isospin dependence of the EOS of asymmetric nuclear matter Parabolic law EA (, T , ) EA (, T ,0) Esym (, T ) 2 W. Zuo, A. Lejeune, U.Lombardo, J.F.Mothiot, EPJA 14 (2002) 469 W. Zuo, Z.H.Li,A. Li, G.C.Lu, PRC 69(2004)064001 Density dependence of symmetry energy TBF effect Thermal effect Critical temperature for liquid-gas phase transition in warm nuclear matter SHF : 14-20 MeV RMT : 14 MeV DBHF: 10 MeV BHF(2BF): 16 MeV BHF(TBF): 13 MeV BHF(Z-d): 11 MeV Z-diagram Full TBF A possible explanation of the discrepancy between the DBHF and BHF predictions W. Zuo, Z.H.Li,A. Li, U.lombardo, NPA745(2004)34. At the lowest mean field approximation, two problems of BHF approach for predicting nuclear s.p. properties: 1. At densities around the saturation density, the predicted optical potential depth is too deep as compared to the empirical value, and it destroy the Hugenholtz-Van Hove (HVH) theorem. Solution: to include the effect of ground state correlations J. P. Jeukenne et al., Phys. Rep. 25 (1976) 83 M. Baldo et al., Phys. Lett. 209 (1988) 135; 215 (1988) 19 2. At high densities, the predicted potential is too attractive and its momentum dependence turns out to be too weak for describing the experimental elliptic flow data. P. Danielewicz, Nucl. Phys. A673 (2000) 375 Improvement in two aspects: 1. Extend the calculation of the effect of ground state correlations to asymmetric nuclear W. Zuo et al., PRC 60 (1999) 024605 2. Include a microscopic three-body force (TBF) and the TBFinduced rearrangement contribution in calculating the s.p. properties W. Zuo et al., NPA706 (2002) 418; PRC 74 (2006) 014317 Single Particle Potential beyond the mean field approximation: 1. Single particle potential at lowest BHF level G( , ; ) vNN vNN k1k 2 k1k2 Q(k1 , k2 ) k1k2 (k1 ) (k2 ) i G( , ; ) U BHF (k ) n(k ') Re kk ' G[ (k ) (k ')] kk ' A k' 2. Ground state correlations 3. TBF rearrangement V3eff 1 TBF (k ) ij ij 2 ij nk Full s.p. potential: ni n j A U (k ) U BHF (k ) U2 (k ) UTBF (k ) Single particle potential at the BHF level In neutron rich matter : Up<Un at low momenta Up>Un at high enough momenta W. Zuo, I. Bombaci and U. Lombardo, PRC W. Zuo, L.G. Gao, B.A. Li et al., Phys. Rev. C72 (2005)014005 . Pauli rearrangement contribution: Ground state correlations 1. The Pauli rearrangement is repulsive 2. It affects maily the s.p. potential at low momenta and vanishes repaidly above Fermi momentum 3. It distories the linear beta-dependence of the s.p. potential W. Zuo, I. Bombaci, U. Lombardo, PRC 60 (1999) 024605 Neutron-proton effective mass splitting in neutron-rich matter 1 1 m dU m k d 1 m m dk kF p dk k F * M*n > M*p neutrons protons Comparison to other predictions: DBHF: mn* > mp* Dalen et al., PRL95(2005)022302 Z. Y. Ma et al., PLB 604 (2004)170 F. Sammarruca et al., nucl-th/0411053 Skyrme-like interactions: mp* < mn* or mn* < mp* B. A. Li et al., PRC69(2004)064602 W. Zuo, L.G. Gao, B.A. Li et al., Phys. Rev. C72 (2005)014005 . TBF rearrangment contribution to s.p. potential in symmetric nuclear matter V3eff 1 U TBF (k ) ij ij 2 ij nk ni n j A Effective mass 1. The TBF induces a strongly repulsive rearrangement modification of the s. p. potential at high densities and momenta. 2. The TBF rearrangement contribution is strongly momentum dependent at high densities and momenta. Zuo, Lombardo, Schulze, Li, Phys. Rev. C74 (2006) 017304 S.p. potential including the TBF rearrangment contribution W. Zuo, L.G. Gao, B.A. Li et al., Phys. Rev. C72 (2005)014005 . Isospin dependence of the TBF rearrangment effect Symmetry potential 1. Negligible at low densities around and below the Fermi momentum. 2. Enhancement of the repulsion for neutrons and the attraction for protons at high densities Effective masses 1. Remarkable reduction of the neutron and proton effective masses. 2. Suppression of the isospin splitting in neutron-rich matter at high densities. TBF effect on the 1S0 proton gap in neutron star matter TBF suppresses strongly the 1S0 proton superfluidity in neutron stars 1. It reduces the energy gap from ~1 to ~0.5 2. It suppresses largely the density region of the superfluidity W. Zuo et al., PLB 595(2004)44 Proton superfludity: Going from SNM to PNM, the maximum gap value decreases and the density domain enlarges remarkably W. Zuo et al., PRC75(2007)045806 3PF 2 proton and neutron superfluidity in asymmetric nuclear matter Neutron W. Zuo et al., EurPhys. Lett. 84(2008)32001 Proton TBF effect on the 3PF2 neutron gap in neutron star matter and neutron stars TBF enhances remarkably the 3PF2 neutron superfluidity in neutron star matter and in neutron stars 3PF2 gap in Neutron star matter 3PF2 gap in Neutron stars W. Zuo et al., Phys. Rev. C78(2008)015805 Summary • The TBF provides a repulsive contribution to the EOS of nuclear matter and improves remarkably the predicted saturation properties. • The empirical parabolic law for the EOS of ANM can be extended to the highest asymmetry and to the finite-temperature case. • The TBF leads to a strong enhancement of the stiffness of symmetry energy at high densities. • The neutron-proton effective mass splitting is m*n > m*p • The TBF induces a strongly repulsive and momentum-dependent rearrangement contribution to the s.p. potential at high densities. Thank you !