9.2 Partial Derivatives Find the partial derivatives of a given function. Evaluate partial derivatives. Find the four second-order partial derivatives of a function in two.
Download ReportTranscript 9.2 Partial Derivatives Find the partial derivatives of a given function. Evaluate partial derivatives. Find the four second-order partial derivatives of a function in two.
9.2 Partial Derivatives Find the partial derivatives of a given function. Evaluate partial derivatives. Find the four second-order partial derivatives of a function in two variables. Example 1: For find w , x w x 2 xy y2 2yz 2z 2 z, w w , and . y z In order to find w x , we regard x as the variable and y and z as constants. w 2x y x Example 1 (cont.): w x xy y 2yz 2z z, 2 and 2 w y x 2y 2z w z 2y 4z 1 2 Example 2: For f (x, y) 3x y xy, find fx and fy . 2 f x 6xy y Treating y as a constant f y 3x x Treating x2 and x as a constants 2 Example 3: For f (x, y) e y ln x, find fx and fy . xy fx fy 1 ye y x y xy ye x xy x e 1 ln x xe ln x xy xy Example 4: A cellular phone company has the following production function for a 23 13 certain product: p(x, y) 50x y , where p is the number of units produced with x units of labor and y units of capital. a) Find the number of units produced with 125 units of labor and 64 units of capital. b) Find the marginal productivities. c) Evaluate the marginal productivities at x = 125 and y = 64. Example 4 (cont.): a) p(125,64) 50(125) (64) 2 3 13 5000 units b) Marginal Productivity of Labor p px x 13 2 1 3 1 3 100y 50 x y 13 3 3x 50(25)(4) Example 4 (cont.): Marginal Productivity of Capital p py y 2 3 1 2 3 2 3 50x 50 x y 2 3 3 3y Example 4 (cont.): c) Marginal Productivity of Labor px 125, 64 100 64 13 3125 100 4 3 5 2 26 3 13 Example 4 (cont.): Marginal Productivity of Capital py 125, 64 50 125 2 3 364 50 25 316 1 26 24 2 3 DEFINITION: Second-Order Partial Derivatives Take the partial with 2 z 2 f 2 z 2 f 1. 2 2 f xx xx xx x x z f fxy yx yx 2 2. 2 respect to x, and then with respect to x again. Take the partial with respect to x, and then with respect to y. DEFINITION (cont.): Take the partial with 2 z 2 f f yx xy xy 3. z f z f 4. 2 2 f yy yy yy y y 2 2 2 2 respect to y, and then with respect to x. Take the partial with respect to y, and then with respect to y again. Example 5: For 2 3 4 y z f (x, y) x y x y xe , find the four second-order partial derivatives. 2 f a) 2 x fxx f b) yx 2 fxy 3 3 y (2xy 4 x y e ) x 2y 3 12x 2 y (2xy 3 4 x 3 y e y ) y 6xy 2 4 x 3 e y Example 5 (cont.): z f (x, y) x y x y xe 2 3 2 f c) xy fyx f d) 2 y 2 fyy 4 y 2 2 4 y (3x y x xe ) x 2 3 y 6xy 4x e 2 2 4 y (3x y x xe ) y 2 y 6x y xe