Experimental modeling of impact-induced hightemperature processing of silicates. Mikhail Gerasimov Space Research Institute, RAS, Moscow, Russia Yurii Dikov Institute of Ore Deposits, Petrography, Mineralogy and.
Download ReportTranscript Experimental modeling of impact-induced hightemperature processing of silicates. Mikhail Gerasimov Space Research Institute, RAS, Moscow, Russia Yurii Dikov Institute of Ore Deposits, Petrography, Mineralogy and.
Experimental modeling of impact-induced hightemperature processing of silicates. Mikhail Gerasimov Space Research Institute, RAS, Moscow, Russia Yurii Dikov Institute of Ore Deposits, Petrography, Mineralogy and Geochemistry, RAS, Moscow, Russia Oleg Yakovlev Vernadsky Institute of Geochemistry and Analytical Chemistry, RAS, Moscow, Russia Schematic cratering process pt projectilemelt melt projectile target targetmelt melt Projectile/target mixing proportions? Computational issues: v imp < 25 km/s m target melt < 10 m projectile vap < 50 % melt projectile/melt target > 5 % Geochemical observations: (PGEs, Ni, Co, Cr, etc.) individual samples of melt ~ 1 % integral melt sheets « 1 % What happens to chemical composition of colliding materials? Projectile material + Target material mixing + volatilization Impactites LIGHT-GAS-GUN (LGG) EXPERIMENTS. Sample Projectile trajectory A SCHEME OF THE SAMPLE CHAMBER Dust trap Foils with grid system Outflow SIMULATION EXPERIMENTS WITH LASER PULSE (LP) HEATING Filter Foil Calorimeter Nd-glass laser Focussing lens Sample Quartz window Sample chamber Inflow of purging gas Si 0 100 10 20 30 LP experiment with augite. Chemical composition of crater melt and ejected droplets. 90 80 Starting augite 70 40 50 60 Crater melt 50 60 40 Droplets 70 30 80 20 90 10 100 Ca Starting augite SiO2 TiO2 Al2O3 FeO MgO CaO MnO Na2O 49.29 1.13 9.98 8.22 13.09 15.46 0.07 2.75 50.05 1.19 11.05 6.28 14.79 15.13 0.13 1.28 0 0 10 20 30 40 50 60 Droplets Volatilization sequence 37.68 1.73 17.56 4.20 16.90 20.54 0.17 1.15 34.16 2.38 24.41 2.63 7.89 26.94 0.10 1.28 23.29 3.38 31.39 1.51 3.91 35.58 0.12 0.71 15.64 4.47 43.20 1.76 4.79 28.43 0.30 1.39 70 80 90 100 Al Transformation of silicates chemical composition from starting sample (filled symbols) to condensed material (open symbols) in LGG experiments SiO2 0 100 15 85 acidic rocks 30 70 mafic rocks 45 LGG experiment Fe-Ni meteorite (5.6 km/s) granite 55 alkali rocks ultramafic rocks 40 SiO2 Al2O3 FeO CaO Na2O K2O granite 70.2 16.0 2.3 1.1 3.8 6.6 condensate 50.7 19.2 1.1 3.5 22.7 2.7 0 Na2O+K2O+Al2O3 15 30 45 60 60 MgO+FeO “Netheline” cluster Na : Al : Si = 1 : 1 : 1 NaAlSi3O8 melt NaAlSiO4 vapor + 2 SiO2 vapor/melt Bulk compositions of condensed films (mol. %) obtained in LP experiments for target samples composed of some Ab-Ort proportions Depth-profiles of main elements through the thickness of condensed film obtained in LP experiments with Ab56Ort44 mixture 30 concentration, mol % Si No Sample K Na Al BE Al 2s 73.3 ev 1 2 3 4 5 Ab96Ort4 Ab80Ort20 Ab80Ort20 Ab56Ort44 Ab56Ort44 1.3 1.0 2.7 2.2 3.9 5.3 5.2 5.5 5.0 4.3 5.1 4.9 4.9 4.9 Si Phase N BE Si 2p 102.1 ev 4.3 4.0 4.6 4.9 5.1 O Phase Q BE Si 2p 103.6 ev 23.0 21.8 21.7 20.2 20.3 25 Al/Si (phase N) 2.0 20 15 10 5 1.5 Na Al K 1.0 0.5 80 Bottom Surface 20 40 60 Depth inside condensed film, % 0 20 40 100 80 60 Ab in Ab-Ort mixtures (mol %) 64.5 62.5 62.6 61.8 62.5 Augite Depth-profiles of concentrations of Na and Al through the thickness of condensed films produced in LP experiments with augite and meteorites: Indarch, Tsarev, and Etter. Concentration, at. % 5 4 Al Starting sample values 3 Na 2 1 Surface 20 40 60 80 Bottom Depth from the surface, % Tsarev L5 Indarch EH4 2 Al 1 4 4 3 3 Concentration, at.% Na Concentration, at. % Concentration, at.% 3 Etter L5 2 Na 1 2 Na 1 Al Al 0 0 Surface 20 40 60 80 Bottom Depth from the surface, % 0 Surface 20 40 60 80 Depth from the surface, % Bottom Surface 20 40 60 80 Depth from the surface, % Bottom Profiles of Mg/Si ratios through the thickness of condensed films in LP experiments with enstatite, olivine, and serpentine. Simbols on the ordinate indicate initial values. “Enstatite” cluster Mg : Si = 1 : 1 2.0 - enstatite - olivine -serpentine 1.8 Mg/Si, atomic ratio 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 Surface 20 40 60 80 Bottom Depth of the condensed film, % Tsarev (L5) 10000 8000 8000 6000 6000 4000 Na 4000 2000 2000 0 Tsarev (L5) Amphibole 90 60 Na cond 0 initial melt initial melt cond cond 0.4 1600 800 1200 K 800 3 0.3 K 400 400 Sm 0.2 0 initial melt cond 0 initial melt 4 8 3 6 2 0 initial melt cond cond Sm 1 0.1 0 Ce 30 0 initial melt initial melt cond 0.4 0.12 Concentration, ppm INAA analysis of trace elements compositions in starting Tsarev (L5) and amphibole samples and in their melts and condensates obtained in LP experiments Amphibole Hf 2 Hf 4 2 1 initial melt cond Eu 0.06 0 initial melt cond 0 initial melt initial melt cond 5 2.0 U 1.0 0.5 0.9 3 U 2 0.3 0 initial melt 0 initial melt cond Dy 0.6 1 0 cond 1.2 4 1.5 Eu 0.2 0.1 0.03 0 0 0.3 0.09 cond initial melt cond 8 12 Th 6 cond 8 Sc 4 0 initial melt 1.5 50 1.2 40 La 0.6 0.3 cond initial melt cond 0.6 20 Ir 0.4 0.2 0 initial melt cond Co 0 initial melt La 60 30 0.8 0 initial melt Co 0 30 cond 90 600 cond 10 0 initial melt cond 300 initial melt cond 0.9 Sc Ga 10 0 initial melt 900 12 8 4 0 15 5 0 initial melt 24 20 16 12 Ga 4 2 3 0 20 6 9 initial melt cond cond Comparative composition of trace-elements in starting basalt and granite samples and in their condensates formed during LGG experiments. Concentrations of elements Ci are given relative to concentration of sodium, CNa. Ci/CNa 10-1 basalt target granite target Rb La Condensate 10-2 Ce La 10-3 10-4 10-5 Sm Sm U Yb Th Eu Yb Sc Eu 10-4 Ce Th Sc 10-2 10-3 Target 10-1 Ci/CNa LP experiment with olivine LP experiment with olivine Chemical composition (mol %) of starting kerolite (left) and garnierite (right) and of their experimentally produced condensates and melt spherules. Kerolite SiO2 – 53,44 wt.% NiO – 11.32 MgO – 22.59 Fe2O3 – 0.24 Al2O3 – 0.05 H2O –12.58 Si 0 Si 60 0 100 20 40 starting kerolite melt spherules 80 melt spherules 60 60 40 60 40 40 starting garnierite condensate 80 Mg 0 80 20 100 20 40 Mg 60 0 100 20 80 100 Garnierite SiO2 – 33,00 wt.% NiO – 44.50 MgO – 4.52 Fe2O3 – 1.08 Al2O3 – 0.62 CaO – 0.33 H2O –16.42 condensate 20 0 80 20 100 40 0 Ni 60 80 100 Ni Concentrations of Fe, S, P, and Ni in Pt-rich and in silicate droplets 1 30 - silicate droplets - Pt-rich droplets 25 - silicate droplets - Pt-rich droplets P/Si Fe/Si 20 15 0.5 10 5 0 0 0 1 2 0 Al/Si 1 2 Al/Si 5 7 - silicate droplets - Pt-rich droplets 6 - silicate droplets - Pt-rich droplets 4 4 Ni/Si S/Si 5 3 3 2 2 1 1 0 0 0 1 Al/Si 2 0 1 Al/Si 2 Volatilization during an impact is a “non linear” process: - volatilization of elements is dominated by formation of clusters which assemble elements having different “classic” volatility (“enstatite”, “netheline”, “wollastonite”, … clusters); - thermal and chemical reduction of iron with subsequent agglomeration of iron droplets and their dispersion from silicate melts; - scavenging of siderophile elements from silicate melts into forming and dispersing metallic droplets; - observed high volatility of “classically” refractory elements such as REE, U, Th, Hf, Zr, etc. Chemical composition of glass spherules obtained in LP experiment with target mixture of Murchison +Ti-basalt (1:1) in comparison with the composition of «pristine» glasses Si+Ti 0 10 100 - LP spherules - "pristine" glasses - average target - Murchison - Ti - basalt 90 20 80 30 70 40 60 50 50 60 40 70 30 80 20 90 10 100 Al+Ca 0 0 10 20 30 40 50 60 70 80 90 100 Mg+Fe Al vs. Mg/Al in starting sample and in glass spherules in LP experiment with a mixture sample (Murchison+Ti-basalt (1:1)) - Al, wt. % 16 12 LP spherules "pristine" glasses average target Murchison Ti - basalt 8 4 10.57 0 0 1 2 3 Mg/Al, wt. ratio 4 5 Chemical trend for Ti during an impact of a chondritic projectile into lunar basalts basalts 20 - "pristine" glasses - lunar basalts TiO2, wt. % 15 10 5 0 30 35 40 45 SiO2, wt. % 50 55 Chemical trends for Al and Ca during an impact of a chondritic projectile into lunar basalts mixing basalts 15 CaO, wt. % Al2O3, wt. % 15 10 5 10 5 - 'pristine" glasses - lunar basalts - "pristine" glasses - lunar basalts 0 0 30 35 40 45 SiO2, wt. % 50 55 30 35 40 45 SiO2, wt. % 50 55 mixing mixing Chemical trends for Mg and Fe during an impact of a chondritic projectile into lunar basalts basalts basalts 30 30 - "pristine" glasses - lunar basalts 25 20 FeO, wt. % MgO, wt. % 25 15 10 20 15 10 5 5 0 0 30 35 40 45 SiO2, wt. % 50 55 - "pristine" glasses - lunar basalts 30 35 40 45 SiO2, wt. % 50 55 Ca/Al ratios vs. SiO2 in lunar «pristine» glasses (Delano, 1986) and in lunar basalts (Papike et al., 1998) 3 Ca/Al, wt. ratio - "pristine" glasses - lunar basalts 2 1 0 30 40 SiO2, wt.% 50 Conclusions: - the usage of siderophile elements is a powerful tool as an indicator of the presence of meteoritic material but it can provide an underestimation of proportion of the projectile in the impact melt; - we need an involvement of computational methods into the problem of projectile/target mixing.