Are the apparent rapid declines in top pelagic predators real? Mark Maunder, Shelton Harley, Mike Hinton, and others IATTC.
Download ReportTranscript Are the apparent rapid declines in top pelagic predators real? Mark Maunder, Shelton Harley, Mike Hinton, and others IATTC.
Are the apparent rapid declines in top pelagic predators real? Mark Maunder, Shelton Harley, Mike Hinton, and others IATTC Outline • Definitions and terms • Why the declines don’t make sense – Japanese longline catch and effort (EP0) – Population dynamics • Explanatory hypotheses – Regime change – Ecosystem – Spatial distribution of effort – Habitat and gear distribution – Stupid fish hypothesis • Summary Definitions • • • • CPUE = catch-per-unit-of-effort Nominal CPUE Fitting a model Carrying capacity – Average abundance in the absence of fishing Basic assumption C = EqA C/E = qA Where: C= catch, E = effort, and A = abundance C CPUE E area area Albacore Yellowfin 15 15 10 10 5 5 0 0 1950 1960 1970 1980 1990 2000 1950 1960 1970 Bigeye 1990 2000 1990 2000 1990 2000 1990 2000 Bluefin 30 0.006 20 CPUE (# per 1000 hooks) 1980 0.004 10 0.002 0 0.0 1950 1960 1970 1980 1990 2000 1950 1960 Black marlin 1970 1980 Blue marlin 0.25 8 0.20 6 0.15 4 0.10 2 0.05 0.0 0 1950 1960 1970 1980 1990 2000 1950 1960 Striped marlin 1970 1980 Swordfish 5 1.2 4 1.0 3 0.8 0.6 2 0.4 1 0.2 0 0.0 1950 1960 1970 1980 1990 2000 1950 Year 1960 1970 1980 Albacore Catch CPUE 15 600 10 400 5 200 0 0 1950 1960 1970 1980 Year 1990 2000 CPUE (# per 1000 hooks) Catch (000s of fish) 800 600 15 600 10 Catch (000s of fish) 800 400 5 200 0 0 1950 1960 1970 1980 1990 2000 Bigeye 30 Catch (000s of fish) 1500 0.3 500 10 0.1 0 1970 1980 1990 10 600 5 0 0.2 1960 15 200 20 0 Catch CPUE 400 1000 1950 Yellowfin 800 0.0 2000 0 1950 400 1960 1970 1980 1990 Bluefin 200 0.006 0.004 0.002 0 1950 0.0 1960 1950 Black marlin 1970 1960 1980 1970 Blue marlin 0.25 6 4 2000 1990 2000 1980 100 0.15 80 8 6 4 60 0.10 40 2 0.05 0 1960 1970 1980 1990 2 20 0.0 1950 0 2000 0 1950 1960 Striped marlin 5 120 4 100 3 200 100 0 1970 1980 1980 1990 2000 1990 1.2 1.0 80 0.8 60 0.6 40 0.4 1 20 0.2 0 0 2 1960 1970 Swordfish 300 1950 1990 Year 120 0.20 2000 0.0 1950 Year 1960 1970 1980 1990 2000 CPUE (# per 1000 hooks) Albacore 20 Fit model to data • PellaTomlinson-model with Nmsy/N0 = 30% (based on numbers) • Project population dynamics from an unexploited condition using observed catch • Fit to CPUE data as a relative abundance index (assume CPUE proportional to abundance) • Use only Japanese longline CPUE and Catch data Albacore CPUE CPUE (# per 1000 hooks) 15 10 5 0 1950 1960 1970 1980 Year 1990 2000 Albacore Yellowfin 15 15 10 10 5 5 0 0 1950 1960 1970 1980 1990 2000 1950 1960 1970 Bigeye 1990 2000 1990 2000 1990 2000 1990 2000 Bluefin 30 0.006 20 CPUE (# per 1000 hooks) 1980 0.004 10 0.002 0 0.0 1950 1960 1970 1980 1990 2000 1950 1960 Black marlin 1970 1980 Blue marlin 0.25 8 0.20 6 0.15 4 0.10 2 0.05 0.0 0 1950 1960 1970 1980 1990 2000 1950 1960 Striped marlin 1970 1980 Swordfish 5 1.2 4 1.0 3 0.8 0.6 2 0.4 1 0.2 0 0.0 1950 1960 1970 1980 1990 2000 1950 Year 1960 1970 1980 Albacore Yellowfin 15 15 10 10 5 5 0 0 1950 1960 1970 1980 1990 2000 1950 1960 CPUE (# per 1000 hooks) Bluefin 1970 1980 1990 2000 1990 2000 Striped marlin 6 5 0.006 4 0.004 3 2 0.002 1 0.0 0 1950 1960 1970 1980 1990 2000 1950 1960 1970 1980 Swordfish 1.2 Remove first few data points 1.0 0.8 0.6 0.4 0.2 0.0 1950 1960 1970 1980 1990 2000 Year Only fit to decline Albacore Yellowfin CPUE (# per 1000 hooks) 15 15 10 10 5 5 0 0 1950 1960 1970 1980 1990 2000 1950 1960 Bluefin 1970 1980 1990 2000 1990 2000 Blue marlin 8 0.006 6 0.004 4 0.002 2 0.0 0 1950 1960 1970 1980 1990 2000 1950 Year 1960 1970 1980 Regime change hypothesis 0.009 2.5 0.008 0.007 2 Productivity deviation CPUE Blue marlin production residuals 0.006 0.005 0.004 0.003 0.002 0.001 0 1950 1.5 1 0.5 0 -0.5 -1 1960 1970 1980 Year 1990 2000 -1.5 1950 1960 1970 1980 Year 1990 2000 2010 Change in productivity, yellowfin example Relative Recruitment 3 2 1 0 75 77 79 81 83 85 87 89 Year 91 Maunder 2002. IATTC Stock Assessment Report 3 93 95 97 99 01 Change in productivity, bigeye example Relative Recruitment 4 3 2 1 0 81 83 85 87 89 91 Year 93 95 97 99 Maunder and Harley 2002. IATTC Stock Assessment Report 3 01 Ecosystem model High Adult Biomass Low Adult Biomass Proportion of production Ecosystem model 1 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 Sum(N)/Sum(K) Nt species f Nt 1 K species K = carrying capacity N = numbers f(N) is the single species production Ecosystem results • Fits the data significantly better • Nearly all improvement from fit to bluefin tuna data • Also improves fit to blue marlin data Single Species CPUE Bluefin tuna 1950 1960 1970 1980 1990 2000 Ecosystem CPUE Year 1950 1960 1970 1980 Year 1990 2000 Single Species CPUE Blue marlin 1950 1960 1970 1980 1990 2000 1980 1990 2000 Ecosystem CPUE Year 1950 1960 1970 Year Spatial expansion of the longline fishery Spatial hypotheses Time Highest CPUE Highest Profit Equal distribution Simulation of effort expansion • Effort increases by 100 units every 5 years • Movement of effort only occurs every five years • No movement of fish among areas • In highest profit hypothesis, new effort goes into new area and old effort stays in the same area • In highest CPUE hypothesis, all effort goes into new area Relative CPUE CPUE trends 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 10 20 30 40 50 Time Highest CPUE (smoothed) Highest Profits (smoothed) Equal Effort (Abundance) Expansion of the fishery 1.2 1 0.8 0.6 0.4 0.2 0 1950 1960 1970 1980 Year Hooks Squares 1990 2000 30% of striped marlin catch % catch in coastal area Limited stock distribution: striped marlin 45 40 35 30 25 20 15 10 5 0 1950 1960 1970 1980 1990 2000 1980 1990 2000 Year 1.2 1 CPUE 0.8 0.6 0.4 0.2 0 1950 1960 1970 Year Habitat, gear, and fish behavior • Fish have habitats that they prefer • Habitat changes with the environment • Fishermen’s behavior determines where the gear fishes • Gear, habitat, and fish behavior have to match for fishing to be successful • Gear, habitat, and fish behavior have to be taken into consideration when interpreting CPUE Bigelow et al. 2000 Environment Thermocline Depth of gear 50-400 50-150 Current Current Measure of depth (HPB) Increasing depth of longlines 1970 1975 1980 1985 Year 1990 1995 2000 Bigeye tuna Year EPO examples 1960 1970 1980 1990 2000 CPUE Yellowfin tuna Abundance CPUE Nominal CPUE 1960 1970 1980 1990 Year From Keith Bigelow Nominal CPUE Abundance 2000 Habitat standardization • Used to remove the changes of gear depth and the environment from the relative index of abundance • Method developed by Hinton and Nakano 1996 • Applied to bigeye and yellowfin tuna by Bigelow et al. 2002 • Used in the assessments of yellowfin tuna, bigeye tuna, blue marlin, striped marlin, and swordfish in the EPO The “stupid” fish hypothesis The stupid fish hypothesis under historic effort 1950 1960 1970 1980 Year CPUE Catch 1990 2000 CPUE vs abundance Abundance or CPUE 1 0.8 0.6 0.4 0.2 0 1950 1960 1970 1980 Time Abundance CPUE 1990 2000 The big “stupid” fish hypothesis (size-specific vulnerability) Size-specific vulnerability The size specific vulnerable hypothesis under historic effort 1950 1960 1970 1980 Year CPUE catch 1990 2000 Blue marlin example Vulnerability 1 0.8 0.6 0.4 0.2 0 0 2 4 6 8 10 Age Big stupid fish CPUE Constant vulnerability 1950 1960 1970 1980 1990 Year Big stupid fish Constant vulnerability 2000 Historic yellowfin length frequency data Purse seine 60 cm Size at 50% maturity Suda and Schaefer 1965 Longline 150 cm Other Hypotheses • Multiple stocks (e.g. northern and southern albacore) • Fraction of stock (bluefin) • Stock distribution limited (e.g. Striped Marlin, Swordfish, sailfish, shortbill spearfish) • Gear saturation/interference • Increase in fishing power • Targeting (swordfish, bait, setting at night) • Age specific natural mortality • Fishing regulations (e.g. EEZ) Myers Dalhousie Group • Soak time – increases current CPUE – Has slightly increased – Increased soak time increases CPUE • Shark damage – increases current CPUE – 25% in early data and about 4% in recent data – Lower shark damage increases CPUE • Hook saturation - increases current CPUE – Bait loss due to catching other species has decreased – More bait available increases CPUE • • • • Depth of gear Ecosystem Also looking at non-pelagic species and dada from trawl World wide patterns similar Summary – Regime change • Same for all species? • Implies that the stocks are depleted • New management values for new regime – Ecosystem • Implies that the stocks are depleted • Does not explain all increase in production – Spatial distribution of effort • Spatial expansion occurred when the rapid declines occurred • CPUE declines faster than abundance • Final depletion level is the same Summary continued – Habitat and gear distribution • Did not change during period of depletion • Current abundance may be underestimated for most species explaining current catches – Stupid fish hypothesis • Both stupid fish and age-specific vulnerability could explain some of the decline • Indicates stocks are less depleted – Limited distribution of stock • Probably explains increase in CPUE for striped marlin, swordfish, sailfish, and spearfish Conclusions • Regime change, ecosystem, and spatial distribution result in high depletion levels • Longline depth, stupid fish hypothesis, and age-specific vulnerability result in lower depletion levels • Ecosystem, spatial distribution, longline gear depth, and age-specific vulnerability most likely Hypothesis Regime change Ecosystem Spatial distribution Gear depth Stupid fish Size-specific vulnerability Multiple stocks Fraction of stock Interference Increased power Targeting Age-specific M Fishing regulations Soaktime Shark damage Hook saturation More Current depletion level Same Less Unknown x x x x (most) x x x x x x Depends x x x x x 4 Yellowfin and Bigeye selectivity 2 0 40 4 8 12 16 20 24 28 4 8 12 16 20 24 Yellowfin Bigeye A 8FISHERY FISHERY -- PESQUERIA 911 -- PESQUERIA FISHERY -- PESQUERIA 10 -FISHERY 15 1.5 PESQUERIA 12 1.4 1.2 10 1.0 1.0 0.8 0.6 5 0.5 0.4 0.2 0.0 40 4 A 3 0 8 4 812 16 16 24 2032 40 24 28 Age in quarters FISHERY -- PESQUERIA 4 0.0 4 8 16 24 4 32 8 40 12 Age in quarters FISHERY -- PESQUERIA 5 5 FISHERY -- PESQUERIA 7 16 20 24 FISHERY -- PESQUERIA 8 5 5 Current yellowfin length frequency data FISHERY -- PES QUERIA 125 cm 60 cm Size at 50% maturity 8 150 cm FISHERY -- PESQUERIA 4 0.009 0.008 0.007 0.006 0.005 0.004 0.003 0.002 0.001 0 1950 1960 1970 1980 1990 2000 Year 1 0.5 ln(residual) CPUE Age-specific selectivity and recruitment residuals 0 -0.5 -1 -1.5 1950 1960 1970 1980 Year 1990 2000