Ketones and Aldehydes Properties Nomenclature Preparation Reactions Synthesis Carbonyl Functional Groups Large Dipole Controls Properties and Reactivity.

Download Report

Transcript Ketones and Aldehydes Properties Nomenclature Preparation Reactions Synthesis Carbonyl Functional Groups Large Dipole Controls Properties and Reactivity.

Ketones and Aldehydes

Properties Nomenclature Preparation Reactions Synthesis

Carbonyl Functional Groups

Large Dipole Controls Properties and Reactivity

Boiling Points Dipole-Dipole Interactions

O

Adrogenic/Anabolic Steroids

CH 3 OH CH 3 H H H

Testosterone

O CH 3 O CH 3 H H H

Androstenedione

Anabolic Steroids

O CH 3 OH H H H H N N

Nandralone

CH 3 H

Stanozolol

H CH 3 OH CH 3 H

O

IUPAC Nomenclature Ketones

Cl

2-methyl-3-pentanone

O Cl

2,7-dichlorocycloheptanone

O

1-phenyl-1-propanone propiophenone

(common) Br Br O

(R) 6,6-dibromo-5-cyclopentyl-2-heptanone

OH Cl O

(E) 5(S)-hydroxy-1-( m-chlorophenyl)-3-hexen-2-one

O O

trans 1,3-diacetylcyclohexane

IUPAC Nomenclature Aldehydes

H O O H

octanal (E) 3-isopropyl-3-hexenal

Br O CH

cis 4-bromocyclohexane-1-carbaldehyde

O O

5-oxohexanal

H

Prefix

form acet propion butyr valer

Classical Aldehyde Nomenclature

HCHO CH 3 CHO CHO      CHO CHO CHO

Prefix

capro enanth capryl pelargon CHO CHO CHO CHO capr CHO CHO example: Cl Cl

classical:



-dichloro-

-methylenanthaldehyde IUPAC: 4,4-dichloro-2-methylheptanal

Preparation of Ketones and Aldehydes

• • • • • • •

Friedel-Crafts Acylation ( ketones ) Gatterman-Koch Formylation ( aldehydes ) Hydration of Alkynes aldehydes ( ketones with hydroboration) with oxymercuration, Ozonolysis of Alkenes ( aldehydes depending on substitution ) and ketones 1,3-Dithiane alkylations ( aldehydes and ketones ) Reduction of acids, acid chlorides and nitriles Gilman Reaction ( ketones )

Friedel-Crafts Acylation

Isoflavones

Highly Sought After Natural Products

Jamaicin

CH 3

Piscidia erythrina L.

CH 3 O O O O CH 3 O O

CH 3 CH 3 O

Friedel-Crafts Acylation A Convergent Synthesis of Flavonoids

CH 3 CH 3 O OH O ClCCH 2 + CH 3 O TiCl 4 CH 2 Cl 2 OH no rxn here O CH 3 O Price, W.A.; Schuda, P.F.

J.Org. Chem.

,

1987

,

52

, 1972-1979 + H Cl O O O O

Acylation occurs ortho to OH

CH 3 CH 3 O possible complexation via H bond   O H O   O O CH 3 O

Gatterman-Koch Formylation

O CH CO, HCl AlCl 3 /CuCl benzene or activated benzene needed

in situ

preparation of formyl chloride C O + HCl O HCCl

Oxymercuration Hydration Markovnikov

CH 3 CH 2 C CH HgSO 4 , H 2 SO 4 H 2 O OH CH 3 CH 2 C=CH 2

an enol

O CH 3 CH 2 CCH 3

a ketone

Hydroboration Hydration Anti-Markovnikov

CH 3 CH 2 C CH 1) disiamyl borane 2) H 2 O 2 , NaOH OH CH 3 CH 2 CH=CH 2

an enol

B H

(sia) 2 BH

O CH 3 CH 2 CH 2 CH

an aldehyde

Ozonolysis Alkene Cleavage

CH 3 H C=C CH 3 CH 3 1) O 3 in CH 2 Cl 2 2) CH 3 SCH 3 or Zn/HOAc CH 3 O O O CH 3 H C=C CH 3 O O O CH 3 H C O + O DMS CH 3 C CH 3 + DMS O H O O H O ozonide

Gilman Reagent with Acid Chlorides

DIBAH

D i i so b utyl A luminum H ydride

Reduction of an Ester to an Aldehyde

O COCH 2 CH 3 1) DIBAH in toluene 2) H 3 O + O CH + CH 3 CH 2 OH H

DIBAH

Al (CH 3 ) 2 CHCH 2 CH 2 CH(CH 3 ) 2

Nu:

Nucleophilic Addition Reactions: Strong Nucleophiles

  O   O H 3 O + OH Nu Nu

Basic nucleophiles:

RMgX, RLi, LiAlH

Nonbasic nucleophiles:

CN 4 , NaBH 4 , RC CNa

Carbonyl Reactivity

H   O   C H > R O C H > R O C R' > R O C OR decreasing rate of reaction with nucleophile

Cyanohydrin Formation

O CH H CN , (KCN trace amt.) O CH H CN O H C H CN + enant.

Mandelonitrile

in defense glands of millipede

A. corrugata

Nucleophilic Addition Reactions:

O

Weak Nucleophiles

H H + , H 2 O O OH OH 2 H O H H 2 O H 3 O + OH -H 2 O OH a hydrate

Acetal Formation

O H + , CH 3 OH HO OCH 3

hemiacetal

H + , CH 3 OH CH 3 O OCH 3

acetal

O excess CH 3 CH 2 O H, H + CH 3 CH 2 O OCH 2 CH 3 + H 2 O

Acetal Mechanism

O O H H + , CH 3 OH HO OCH 3

hemiacetal

H + , CH 3 OH HO -H + OH 2 H OCH 3 H HO OCH 3 -H 2 O HOCH 3 CH 3 O OCH 3

acetal

-H + OCH 3 H 2 O H CH 3 O OCH 3 HOCH 3

Propose a Mechanism

S S H 3 O + H S S H + O

Use of Ethylene Glycol to Protect Ketones and Aldehydes

O CH 2 O CH 2 O H OCH 2 CH 2 O H, H 3 O + + H 2 O O O ?

CO 2 H CH 2 OH

Synthesis

O 1) HOCH 2 CH 2 OH, H + 2) LiAlH 4 3) H 3 O + O CO 2 H LiAlH 4 will reduce the ketone preferentially, CH 2 OH therefore,

protection

of the ketone is necessary.

O HC

Aldehydes React Preferentially

O CCH 3 O HC OH CHCH 3 HOCH 2 CH 2 OH H + O HC O O CCH 3 1) NaBH 4 2) H 3 O +

Imine Formation

O

Imines and Enamines

N R o 1 amine RNH 2 H 3 O +

pH = 4-5

o 2 amine R 2 NH H 3 O +

imine

NR 2 + H 2 O + H 2 O

enamine

O CH 3 NH 2 H 3 O + , pH = 4-5 H 2 O N CH 3 + H 2 O H N CH 3 O NH 2 CH 3 HO H 3 O + NHCH 3 intermolec.

H + transfer

carbinolamine

H 2 O -H 2 O NHCH 3

Imine Derivatives

O

Wolff-Kishner Reduction

H H NH 2 NH 2 , KOH DMSO + N 2 N NH 2 a hydrazone

Mechanism from Hydrazone

Deoxygenation

O

Enamine Mechanism (same as imine mech. until last step)

CH 3 N CH 3 (CH 3 ) 2 NH H 3 O + , pH = 4-5 CH 3 N CH 3 H OH 2

Wittig Reaction: C=O into C=C

(C 6 H 5 ) 3 P + CH 3 Br

Ylide Synthesis

S N 2 (C 6 H 5 ) 3 P CH 3 Br (C 6 H 5 ) 3 P CH 3 + CH 3 CH 2 CH 2 CH 2 Li (C 6 H 5 ) 3 P CH 2

phosphorous ylide

(C 6 H 5 ) 3 P CH 2 methylene triphenylphosphorane

Mechanism

(C 6 H 5 ) 3 P CH 2 (C 6 H 5 ) 3 P CH 2 + O HC (C 6 H 5 ) 3 P O CH 2 H C methylene triphenylphosphorane (C 6 H 5 ) 3 PO + CH 2 =CH (C 6 H 5 ) 3 P O CH 2 H C an oxaphosphetane

O (CH 3 ) 2 CHCH 2 CCH 3 (C 6 H 5 ) 3 P =C(CH 3 ) 2 CH 3 C CH 3 (CH 3 ) 2 CHCH 2 CCH 3 + (C 6 H 5 ) 3 P =O

Pure Alkene is Formed in Wittig Rxn

CH 3 CH 2 O 1) CH 3 MgBr 2) POCl 3 , pyr.

+ (C 6 H 5 ) 3 P=CH 2 9 : 1 CH 2 methylenecyclohexane exclusively

(Methoxymethylene)-triphenylphosphorane an Aldehyde Prep

O H OCH 3 O CH (C 6 H 5 ) 3 P CHOCH 3 H 3 O +

O

Propose a Sequence of Steps…

O H CHCH 3 O H

Provide a Mechanism

O OCH 3 H + , H 2 * O *O is O-18 O * OH same conditions HO + CH 3 OH H * O

O OCH 3 H + , H 2 * O *O is O-18 O H OCH 3 O - CH 3 OH * OH 2 O H + * OH same conditions HO + CH 3 OH HO H + O H 2 O H * OH H O * OH H * O H 2 O H * O H

Conjugate Addition to

,

-Unsaturated C=O groups

O O O O     2 electrophilic sites

O 

1,2

- vs.

1,4

-Addition

CH 3 O H 1) CH 3 MgBr 2) H 3 O +   O H 1) Li( CH 3 ) 2 Cu 2) H 3 O + CH 3

Gilman Reagents add 1,4

CH 3 CH 2 CH 3 CH 2 O H 1) Li( CH 3 CH 2 ) 2 Cu 2) H 3 O + CH 3 CH 2 H O H O Li H H

O

Synthesis

??

CH 3 CH 2 CH 2 OH CN

Carry Out Conjugate Addition 1st

O 1) Li(CH 3 CH 2 CH 2 ) 2 Cu 2) H 3 O + 3) HCN, (KCN) CH 3 CH 2 CH 2 OH CN

• • • •

MCAD Deficiency, a Genetic Disease

Children with any of these enzyme deficiencies have a significant risk (20%) of death during the first, clinical episode of hypoglycemia (low blood glucose).

Those patients affected show episodes of acute, life-threatening attacks that are symptomatically consistent with Reye’s Syndrome and sometimes misdiagnosed as S.I.D.S.

The most common of these in-born errors is MCAD Deficiency. ( M edium C hain A cyl-CoA Dehydrogenase) ~1/50 Caucasians carry the gene.

MCAD Enzyme

• • (MCAD) is one of the enzymes involved in mitochondrial fatty acid  -oxidation, which fuels hepatic ketogenesis, a major source of energy once hepatic glycogen stores become depleted during prolonged fasting and periods of higher energy demands.

Typically, a previously healthy child with MCAD deficiency presents with hypoketotic hypoglycemia, vomiting, liver dysfunction, skeletal muscle weakness and lethargy triggered by a common illness. On average, this occurs between 3 and 24 months of age.

Ackee Fruit (Bligia Sapida) from Jamaica

Ingestion of the unripe seeds from the fruit of the Jamaican Ackee tree causes a disruption of the dehydrogenase enzymes needed to metabolize fatty acids. This “vomiting sickness” is a result of the enzyme inhibitor Hypoglycin A.

CO 2 H NH 2

(R)(-) MCPA

is the Toxic Metabolite of Hypoglycin-A CO 2 H H NH 2

Hypoglycin-A

from

Bligia sapida

metabolism OH H O

(R)(-) MCPA binds irreversibly to medium-chain acyl-CoA dehydrogenase enzymes

O H (R)(-) Cl

Wittig Approach to Both Enantiomers

1) Ph 3 P=CH 2 2) KOC(CH 3 ) 3 3) n-BuLi, HCHO HO (S) via initial S N 2

(S )(+) MCPA (R)(-) MCPA

HO (R) via initial epoxide opening

Wittig Approach to (S)(+)-MCPA

Start with (R)(-) Epichlorohydrin S N 2 on 1 o Alkyl Chloride?

O H (R)(-) Cl (C 6 H 5 ) 3 P=CH 2 O H (S) P(C 6 H 5 ) 3 Cl KOC(CH 3 ) 3 O H P(C 6 H 5 ) 3 O (R,R) P(C 6 H 5 ) 3 O P(C 6 H 5 ) 3 (R,R)

O Wittig Sequence Affords (S) (Methylenecyclopropyl)methanol O O n-butyl Li P(C 6 H 5 ) 3 P(C 6 H 5 ) 3 (R,R) (R,R) OH P(C 6 H 5 ) 3 paraformaldehyde O H C H O - (C 6 H 5 ) 3 PO OH P(C 6 H 5 ) 3 CH 2 O P (C 6 H 5 ) 3 O (S)

Homologation to (S)(-)-MCPA

CN OH OSO 2 CH 3 CH 3 SO 2 Cl pyridine KCN DM F (S) (S) (S) hydrolysis or 1) DIBAH 2) CrO 3 , H 2 SO 4 HO 2 C (S)

Approach to (R)-(+)-MCPA

Same Wittig Approach with Ylide Opening the Epoxide First?

O Cl H (R) H 2 C=P(C 6 H 5 ) 3 (C 6 H 5 ) 3 P O H Cl (C 6 H 5 ) 3 P (R) H O KOC(CH 3 ) 3 (C 6 H 5 ) 3 P O (S,S)