MATH/CMPSC 455 Introduction to Numerical Analysis I Numerical Integration NUMERICAL INTEGRATION Mathematical Problem: b ò f (x )dx a Example: Example: 113 4 ò 1x dx = 3 x |1 =
Download ReportTranscript MATH/CMPSC 455 Introduction to Numerical Analysis I Numerical Integration NUMERICAL INTEGRATION Mathematical Problem: b ò f (x )dx a Example: Example: 113 4 ò 1x dx = 3 x |1 =
MATH/CMPSC 455 Introduction to Numerical Analysis I Numerical Integration NUMERICAL INTEGRATION Mathematical Problem: b ò f (x )dx a Example: Example: 3 1 4 1 2 3 4 ò 1x dx = 3 x |1 = 3 - 3 = 21. 4 4 òe 1 x2 dx = ? By calculus, find F that F ' = f , then use b ò f (x )dx = F(b) - F(a) a Numerical Integration: replace f by another function g that approximates f well and is easily integral, then we have b b a a ò f (x )dx » ò g (x )dx . NEWTON-COTES FORMULAS Idea: use polynomial interpolation to find the approximation function g (x ) Step 1: Select nodes x 0 ,x 1 , ,x n in [a,b] Step 2: Use Lagrange form of polynomial interpolation to find the approximation function n p(x ) = åf (x i )l i (x ) i =1 Step 3: n ò f (x )dx » ò p(x )dx = åf (x )ò l (x )dx . b b a a b i i =0 a i TRAPEZOID RULE Use two nodes: x 0 = a and x 1 = b b -a ò af (x )dx » 2 (f (a) + f (b)). b a b SIMPSON’S RULE a +b Use three nodes: x 0 = a,x 1 = ,x 2 = b. 2 b -a a +b ò af (x )dx » 6 (f (a) + 4f ( 2 ) + f (b)) b a b Example: Apply the Trapezoid Rule and Simpson’s Rule to approximate ò b a 3 x dx Example: Apply the Trapezoid Rule and Simpson’s Rule to approximate ò 2 1 ln x dx Error of the trapezoid rule: b -a (b - a)2 E = ò f (x )dx (f (a) + f (b)) = f ''(h ), a 2 12 b h Î[a,b] The trapezoid rule is exact for all polynomial of degree less than or equal to 1. Error of the Simpson’s rule: b -a a +b f (4) (x ) b - a 5 E = ò f (x )dx (f (a) + 4f ( ) + f (b)) = ( ), a 6 2 90 2 b x Î[a,b] The Simpson’s rule is exact for all polynomial of degree less than or equal to 3. THE COMPOSITE TRAPEZOID RULE Why? ? The high order polynomial interpolations are unbounded! Step 1: Partition the interval [a,b] into n subintervals by introducing points a = x 0 < x 1 < x 2 < < x n = b. Step 2: Use the trapezoid rule on each subinterval ò hi f (x )dx » (f (x i ) + f (x i +1 )), 2 x i +1 xi hi = x i +1 - x i Step 3: Sum over all subintervals n-1 n-1 b x i +1 hi f (x )dx »å (f (x i ) + f (x i +1 )) ò af (x )dx = å ò xi 2 i =0 i =0 THE COMPOSITE SIMPSON’S RULE n-1 h S n = å(f (x i ) + 4f (x 1 ) + f (x i +1 )) i+ 6 i =0 2 n-1 n-1 h h 2h = (f (x 0 ) + f (x n )) + åf (x i ) + f (x 1 ) å i+ 6 3 i =1 3 i =0 2 b -a h = x i +1 - x i = n ERROR OF COMPOSITE RULES Error of the composite trapezoid rule: h (b - a)f ¢¢(h ) 2 (f (x i ) + f (x i +1 )) = h ò af (x )dx - 2 å 12 i =0 n-1 b Error of the composite Simpson’s rule: (b - a)f (4) (h ) 4 ò af (x )dx - S n = 2880 h b Example: Apply the composite Trapezoid Rule and Simpson’s Rule ( 4 subintervals ) to approximate ò 2 1 ln x dx