Hypothesis Testing in Econometrics

Download Report

Transcript Hypothesis Testing in Econometrics

Slide 1

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 2

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 3

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 4

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 5

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 6

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 7

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 8

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 9

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 10

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 11

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 12

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 13

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 14

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 15

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 16

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 17

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 18

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 19

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 20

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 21

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 22

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 23

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 24

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 25

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 26

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 27

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 28

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 29

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 30

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 31

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 32

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 33

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 34

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 35

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 36

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 37

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 38

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 39

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 40

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 41

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 42

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 43

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 44

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 45

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 46

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 47

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 48

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 49

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 50

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 51

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 52

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 53

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 54

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 55

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 56

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 57

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 58

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 59

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 60

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 61

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 62

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 63

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 64

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 65

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 66

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 67

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 68

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 69

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 70

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 71

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 72

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 73

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 74

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23


Slide 75

INTERPRETATION OF A REGRESSION EQUATION

80

Hourly earnings ($)

70
60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
The scatter diagram shows hourly earnings in 1994 plotted against highest grade completed
for a sample of 570 respondents.
1

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

This is the output from a regression of earnings on highest grade completed, using Stata.

4

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

For the time being, we will be concerned only with the estimates of the parameters. The
variables in the regression are listed in the first column and the second column gives the
estimates of their coefficients.
5

INTERPRETATION OF A REGRESSION EQUATION

. reg EARNINGS S
Source |
SS
df
MS
---------+-----------------------------Model | 3977.38016
1 3977.38016
Residual | 34419.6569
568 60.5979875
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 1,
568)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
65.64
0.0000
0.1036
0.1020
7.7845

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
1.073055
.1324501
8.102
0.000
.8129028
1.333206
_cons | -1.391004
1.820305
-0.764
0.445
-4.966354
2.184347
------------------------------------------------------------------------------

EARNINGS

  1 . 391  1 . 073 S

In this case there is only one variable, S, and its coefficient is 1.073. _cons, in Stata, refers
to the constant. The estimate of the intercept is -1.391.
6

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Here is the scatter diagram again, with the regression line shown.

7

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What do the coefficients actually mean?

8

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
To answer this question, you must refer to the units in which the variables are measured.

9

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
S is measured in years (strictly speaking, grades completed), EARNINGS in dollars per
hour. So the slope coefficient implies that hourly earnings increase by $1.07 for each extra
year of schooling.
10

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
We will look at a geometrical representation of this interpretation. To do this, we will
enlarge the marked section of the scatter diagram.
11

INTERPRETATION OF A REGRESSION EQUATION
15

Hourly earnings ($)

14
13

$11.49

12
11
10

$1.07
One year
$10.41

9
8
7
10.8

11

11.2

11.4

11.6

11.8

12

12.2

Highest grade completed
The regression line indicates that completing 12th grade instead of 11th grade would
increase earnings by $1.073, from $10.413 to $11.486, as a general tendency.
12

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
You should ask yourself whether this is a plausible figure. If it is implausible, this could be
a sign that your model is misspecified in some way.
13

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
For low levels of education it might be plausible. But for high levels it would seem to be an
underestimate.
14

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
What about the constant term? (Try to answer this question yourself before continuing with
this sequence.)
15

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
Literally, the constant indicates that an individual with no years of education would have to
pay $1.39 per hour to be allowed to work.
16

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
This does not make any sense at all, an interpretation of negative payment is impossible to
sustain.
17

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
A safe solution to the problem is to limit the interpretation to the range of the sample data,
and to refuse to extrapolate on the ground that we have no evidence outside the data range.
18

INTERPRETATION OF A REGRESSION EQUATION

80

^

EARNINGS

Hourly earnings ($)

70

  1 . 391  1 . 073 S

60
50
40
30
20
10
0
-10

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling
With this explanation, the only function of the constant term is to enable you to draw the
regression line at the correct height on the scatter diagram. It has no meaning of its own.
19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
EARNINGS = b1 + b2S + b3A+ u
Specifically, we will look at an earnings function model where hourly earnings, EARNINGS,
depend on years of schooling (highest grade completed), S, and a measure of cognitive
ability, A.
The model has three dimensions, one each for EARNINGS, S, and A. The starting point for
investigating the determination of EARNINGS is the intercept, b1.
Literally the intercept gives EARNINGS for those respondents who have no schooling and
who scored zero on the ability test. However, the ability score is scaled in such a way as to
make it impossible to score zero. Hence a literal interpretation of b1 would be unwise.
The next term on the right side of the equation gives the effect of variations in S. A one year
increase in S causes EARNINGS to increase by b2 dollars, holding A constant.
Similarly, the third term gives the effect of variations in A. A one point increase in A causes
earnings to increase by b3 dollars, holding S constant.
The final element of the model is the disturbance term, u. In this observation, u happens to
have a positive value.

2

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i

A sample consists of a number of observations generated in this way. Note that the
interpretation of the model does not depend on whether S and A are correlated or not.
However we do assume that the effects of S and A on EARNINGS are additive. The impact
of a difference in S on EARNINGS is not affected by the value of A, or vice versa.

The regression coefficients are derived using the same least squares principle used in
simple regression analysis. The fitted value of Y in observation i depends on our choice of
b1, b2, and b3.

11

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

Yi  b 1  b 2 X 2i  b 3 X 3i  ui
Yˆi  b1  b 2 X 2 i  b 3 X 3 i
e i  Y i  Yˆi  Y i  b1  b 2 X 2 i  b 3 X 3 i

The residual ei in observation i is the difference between the actual and fitted values of Y.

12

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE

RSS 



ei 
2



(Y i  b1  b 2 X 2 i  b 3 X 3 i )

2

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and b3 so as to
minimize it.

13

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S ASVABC
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
ASVABC |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 ASVABC

Here is the regression output for the earnings function using Data Set 21.

19

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

It indicates that earnings increase by $0.74 for every extra year of schooling and by $0.15
for every extra point increase in A.
20

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Literally, the intercept indicates that an individual who had no schooling and an A score of
zero would have hourly earnings of -$4.62.
21

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE
. reg EARNINGS S A
Source |
SS
df
MS
---------+-----------------------------Model | 4745.74965
2 2372.87483
Residual | 33651.2874
567 59.3497133
---------+-----------------------------Total | 38397.0371
569 67.4816117

Number of obs
F( 2,
567)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
39.98
0.0000
0.1236
0.1205
7.7039

-----------------------------------------------------------------------------EARNINGS |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------S |
.7390366
.1606216
4.601
0.000
.4235506
1.054523
A |
.1545341
.0429486
3.598
0.000
.0701764
.2388918
_cons | -4.624749
2.0132
-2.297
0.022
-8.578989
-.6705095
------------------------------------------------------------------------------

EAR Nˆ INGS   4 . 62  0 . 74 S  0 . 15 A

Obviously, this is impossible. The lowest value of S in the sample was 6, and the lowest A
score was 22. We have obtained a nonsense estimate because we have extrapolated too far
from the data range.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For this reason we need to refer to a table of critical values of t when performing
significance tests on the coefficients of a regression equation.
18

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

At the top of the table are listed possible significance levels for a test. For the time being
we will be performing two-tailed tests, so ignore the line for one-tailed tests.
19

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Hence if we are performing a (two-tailed) 5% significance test, we should use the column
thus indicated in the table.
20

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869




Number of degrees
of…
freedom…
in a regression






= number of observations
- number
estimated.
1.734
2.101
2.552of parameters
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

The left hand vertical column lists degrees of freedom. The number of degrees of freedom
in a regression is defined to be the number of observations minus the number of
parameters estimated.
21

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

In a simple regression, we estimate just two parameters, the constant and the slope
coefficient, so the number of degrees of freedom is n - 2 if there are n observations.
22

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If we were performing a regression with 20 observations, as in the price inflation/wage
inflation example, the number of degrees of freedom would be 18 and the critical value of t
for a 5% test would be 2.101.
23

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0.1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

Note that as the number of degrees of freedom becomes large, the critical value converges
on 1.96, the critical value for the normal distribution. This is because the t distribution
converges on the normal distribution.
24

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

If instead we wished to perform a 1% significance test, we would use the column indicated
above. Note that as the number of degrees of freedom becomes large, the critical value
converges to 2.58, the critical value for the normal distribution.
27

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
t Distribution: Critical values of t
Degrees of Two-tailed test
freedom One-tailed test
1
2
3
4
5


18
19
20


120



10%
5%

5%
2.5%

2%
1%

1%
0.5%

0.2%
0.1%

0 .1%
0.05%

6.314 12.706 31.821 63.657 318.31 636.62
2.920
4.303
6.965
9.925 22.327 31.598
2.353
3.182
4.541
5.841 10.214 12.924
2.132
2.776
3.747
4.604
7.173
8.610
2.015
2.571
3.365
4.032
5.893
6.869












1.734
2.101
2.552
2.878
3.610
3.922
1.729
2.093
2.539
2.861
3.579
3.883
1.725
2.086
2.528
2.845
3.552
3.850












1.658
1.980
2.358
2.617
3.160
3.373
1.645
1.960
2.326
2.576
3.090
3.291

For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

28

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

s.d. of b2 known

s.d. of b2 not known

discrepancy between
hypothetical value and sample
estimate, in terms of s.d.:

discrepancy between
hypothetical value and sample
estimate, in terms of s.e.:

b2  b 2

0

z 

b2  b 2

0

t 

s.d.

s.e.

5% significance test:

1% significance test:

reject H0: b2 = b20 if
z > 1.96 or z < -1.96

reject H0: b2 = b20 if
t > 2.878 or t < -2.878

So we should this figure in the test procedure for a 1% test.

29

EXERCISE

3.10

A researcher with a sample of 50 individuals with similar
education but differing amounts of training hypothesizes
that hourly earnings, EARNINGS, may be related to hours
of training, TRAINING, according to the relationship
EARNINGS = b1 + b2 TRAINING + u
He is prepared to test the null hypothesis H0: b2 = 0 against
the alternative hypothesis H1: b2  0 at the 5 percent and 1
percent levels. What should he report
1.
2.
3.
4.

If b2 = 0.30, s.e.(b2) = 0.12?
If b2 = 0.55, s.e.(b2) = 0.12?
If b2 = 0.10, s.e.(b2) = 0.12?
If b2 = -0.27, s.e.(b2) = 0.12?

1

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom

There are 50 observations and 2 parameters have been estimated, so there are 48 degrees
of freedom.
2

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68

The table giving the critical values of t does not give the values for 48 degrees of freedom.
We will use the values for 50 as a guide. For the 5% level the value is 2.01, and for the 1%
level it is 2.68. The critical values for 48 will be slightly higher.
3

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50.

In the first case, the t statistic is 2.50.

4

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5% level but not at the 1%
level.
This is greater than the critical value of t at the 5% level, but less than the critical value at
the 1% level.
5

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

In this case we should mention both tests. It is not enough to say "Reject at the 5% level",
because it leaves open the possibility that we might be able to reject at the 1% level.
6

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

1. If b2 = 0.30, s.e.(b2) = 0.12?
t = 2.50. Reject H0 at the 5%, but not at the 1%, level.

Likewise it is not enough to say "Do not reject at the 1% level", because this does not reveal
whether the result is significant at the 5% level or not.
7

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58.

In the second case, t is equal to 4.58.

8

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 1% level.

We report only the result of the 1% test. There is no need to mention the 5% test. If you do,
you reveal that you do not understand that rejection at the 1% level automatically means
rejection at the 5% level, and you look ignorant.
9

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Actually, given the large t statistic, it is a good idea to investigate whether we can reject H0
at the 0.1% level. It turns out that we can. The critical value for 50 degrees of freedom is
3.50. So we just report the outcome of this test. There is no need to mention the 1% test.
10

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

Why is it a good idea to press on to a 0.1% test, if the t statistic is large? Try to answer this
question before looking at the next slide.
11

EXERCISE 3.10

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

The reason is that rejection at the 1% level still leaves open the possibility of a 1% risk of
having made a Type I error (rejecting the null hypothesis when it is in fact true). So there is
a 1% risk of the "significant" result having occurred as a matter of chance.
12

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

2. If b2 = 0.55, s.e.(b2) = 0.12?
t = 4.58. Reject H0 at the 0.1% level (tcrit, 0.1% = 3.50).

If you can reject at the 0.1% level, you reduce that risk to one tenth of 1%. This means that
the result is almost certainly genuine.
13

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83.

In the third case, t is equal to 0.83.

14

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

3. If b2 = 0.10, s.e.(b2) = 0.12?
t = 0.83. Do not reject H0 at the 5% level.

We report only the result of the 5% test. There is no need to mention the 1% test. If you do,
you reveal that you do not understand that not rejecting at the 5% level automatically means
not rejecting at the 1% level, and you look ignorant.
15

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25.

In the fourth case, t is equal to -2.25.

16

EXERCISE

EARNINGS = b1 + b2 TRAINING + u
H0: b2 = 0, H1: b2  0
n = 50, so 48 degrees of freedom
tcrit, 5% = 2.01, tcrit, 1% = 2.68
_______________________________________________

4. If b2 = -0.27, s.e.(b2) = 0.12?
t = -2.25. Reject H0 at the 5% level but not at the 1%
level.
The absolute value of the t statistic is between the critical values for the 5% and 1% tests.
So we mention both tests, as in the first case.
17

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

This sequence describes two F tests of goodness of fit in a multiple regression model. The
first relates to the goodness of fit of the equation as a whole.
1

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

We will consider the general case where there are k - 1 explanatory variables. For the F test
of goodness of fit of the equation as a whole, the null hypothesis, in words, is that the
model has no explanatory power at all.
2

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

Of course we hope to reject it and conclude that the model does have some explanatory
power.
3

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The model will have no explanatory power if it turns out that Y is unrelated to any of the
explanatory variables. Mathematically, therefore, the null hypothesis is that all the
coefficients b2, ..., bk are zero.
4

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

The alternative hypothesis is that at least one of these

b coefficients is different from zero.
5

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the multiple regression model there is a difference between the roles of the F and t tests.
The F test tests the joint explanatory power of the variables, while the t tests test their
explanatory power individually.
6

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

In the simple regression model the F test was equivalent to the (two-tailed) t test on the
slope coefficient because the "group" consisted of just one variable.
7

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
The F statistic for the test was defined in the last sequence in Chapter 3. ESS is the
explained sum of squares and RSS is the residual sum of squares.
8

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
It can be expressed in terms of R2 by dividing the numerator and denominator by TSS, the
total sum of squares.
9

F TESTS OF GOODNESS OF FIT

Y  b 1  b 2 X 2  ...  b k X k  u
H 0 : b 2  ...  b k  0
H 1 : at least one b  0

F ( k  1, n  k ) 

ESS ( k  1 )
RSS ( n  k )
ESS

 TSS
RSS

( k  1)

(n  k )

R

2

( k  1)

(1  R ) ( n  k )
2

TSS
ESS / TSS is equal to R2 and RSS / TSS is equal to (1 - R2). (For proofs, see the last
sequence in Chapter 3.)
10

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

The educational attainment model will be used as an example. We will suppose that S
depends on ASVABC, the ability score, and SM, and SF, the highest grade completed by the
mother and father of the respondent, respectively.
11

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0

The null hypothesis for the F test of goodness of fit is that all three slope coefficients are
equal to zero. The alternative hypothesis is that at least one of them is non-zero.
12

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

Here is the regression output using Data Set 21.

13

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

In this example, k - 1, the number of explanatory variables, is equal to 3 and n - k, the
number of degrees of freedom, is equal to 566.
14

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The numerator of the F statistic is the explained sum of squares divided by k - 1. In the
Stata output these numbers are given in the Model row.
15

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The denominator is the residual sum of squares divided by the number of degrees of
freedom remaining.
16

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F ( k  1, n  k ) 

ESS /( k  1 )

RSS /( n  k )

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Hence the F statistic is 110.8. All serious regression packages compute it for you as part of
the diagnostics in the regression output.
17

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The critical value for F(3,566) is not given in the F tables, but we know it must be lower than
F(3,120), which is given. At the 0.1% level, this is 5.78. Hence we easily reject H0 at the 0.1%
level.
18

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

This result could have been anticipated because both ASVABC and SF have highly
significant t statistics. So we knew in advance that both b2 and b4 were non-zero.
19

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

It is unusual for the F statistic not to be significant if some of the t statistics are significant.
In principle it could happen though. Suppose that you ran a regression with 40 explanatory
variables, none being a true determinant of the dependent variable.
20

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

Then the F statistic should be low enough for H0 not to be rejected. However, if you are
performing t tests on the slope coefficients at the 5% level, with a 5% chance of a Type I
error, on average 2 of the 40 variables could be expected to have "significant" coefficients.
21

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

The opposite can easily happen, though. Suppose you have a multiple regression model
which is correctly specified and the R2 is high. You would expect to have a highly
significant F statistic.
22

F TESTS OF GOODNESS OF FIT

S  b 1  b 2 ASVABC

 b 3 SM  b 4 SF  u

H0 : b2  b3  b4  0
. reg S ASVABC SM SF
Source |
SS
df
MS
---------+-----------------------------Model | 1278.24153
3 426.080508
Residual | 2176.00584
566 3.84453329
---------+-----------------------------Total | 3454.24737
569 6.07073351

Number of obs
F( 3,
566)
Prob > F
R-squared
Adj R-squared
Root MSE

=
=
=
=
=
=

570
110.83
0.0000
0.3700
0.3667
1.9607

-----------------------------------------------------------------------------S |
Coef.
Std. Err.
t
P>|t|
[95% Conf. Interval]
---------+-------------------------------------------------------------------ASVABC |
.1295006
.0099544
13.009
0.000
.1099486
.1490527
SM |
.069403
.0422974
1.641
0.101
-.013676
.152482
SF |
.1102684
.0311948
3.535
0.000
.0489967
.1715401
_cons |
4.914654
.5063527
9.706
0.000
3.920094
5.909214
------------------------------------------------------------------------------

F crit,0.1% ( 3 ,120 )  5 . 78

F ( 3 , 566 ) 

1278 / 3

 110 . 8

2176 / 566

However, if the explanatory variables are highly correlated and the model is subject to
severe multicollinearity, the standard errors of the slope coefficients could all be so large
that none of the t statistics is significant.
23