+2 - The Institute of Chemistry - The Hebrew University of Jerusalem

Download Report

Transcript +2 - The Institute of Chemistry - The Hebrew University of Jerusalem

Slide 1

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 2

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 3

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 4

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 5

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 6

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 7

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 8

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 9

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 10

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 11

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 12

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 13

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 14

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 15

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 16

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 17

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 18

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 19

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 20

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 21

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 22

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 23

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 24

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 25

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 26

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 27

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 28

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 29

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 30

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 31

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 32

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 33

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 34

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 35

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 36

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 37

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 38

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 39

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 40

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials


Slide 41

Nanoporosity – where is it useful in chemistry?
David Avnir
Institute of Chemistry
The Hebrew University of Jerusalem

Nano Center Meeting, Ashkelon, March 29-30, 2015

1. The material at focus - silica

Silica

Controlled nanoporosity

Surface area and
pore volume of
silica as a
function of pH
and water/silane
ratio in the solgel process

Functionality within a sol-gel matrix

Monoliths
Powders
Particles
This-films

2. Chemical sponges – diffusion considerations

VTS: An efficient bromine sponge

Sol-Gel Sponges

O
O

Si

O
Si
O

O

O

HO

Si

O H
O
O Si C

O
Si

O Si
O

Si

O

OH
Si

H

O

H 2C
OH

Si
O

Si
O

O

OH
Si
O

Si

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O
H

CH

O

O

HO

H

2

O

Si

C

H

O

O

H

OH
H 2C

OH

O

OH

H 2C

H

2

Si

HO

H

O

silica cage

O

O

H

CH

O

Si

C

H 2C

-

CH

CH

H

OH

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

Br 2 /H
O2 O
Br 22 /H

Si
HO

hydrobromic

OH

O

OH

OH

acid

Br
CH

OH

-

H
O

2

H
Br

Br

O
H

H

O

Si
O

HO

Br

H
-

CH

H 2C

Br

O H
O
C OH
O Si
O
CH 2
Si
Br

vinyl group

Hagit Frenkel-Mullerad

O

OH
O Si CH
O
CH
Si

HO

Si

O

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
2
HO
Br
O
OH
CH 2
CH
Si
OH OH
Si O
OH OH
OH
Si
HC
O
O
HO
Si
Si
O Si O
O
Si
Si
O
O
O
Si
O
O
O
O
O
OH

O

H
Si(CH 2 )n

C

C

H
H

Br 2

HO
H
Si(CH 2 )n

2H 2 O

H
C

C

H

H 3O

Br

The reaction kinetics can be followed in two ways:
1.

Following the visible absorption of bromine

2. Following the decrease in pH

Br

Kinetics of the reaction through
follow-up of Br2 consumption

Vinylated silica

Kinetics of the reaction as detected by HBr release

2.4

pH

2.35

X10

slower

2.3

2.25

2.2
0

10

20

30

40

50

Time (min)

Kinetics of reactivity in nanopores depends on the
analytical probe!

Kinetics depends also on the fine details of the hybrid material,
even if the functionality is the same:
Vinyl, allyl, butyl, octyl.

The shorter chains are much more reactive than the longer ones why?
Time (s)
1.1
1

A/Ao

0.9
0.8
0.7

VTS
ATS
BTS
OTS

0.6

Initial rates

0.5

0

2

4

6

Time (s)

8

10

12

A schematic view of the possible micellar nano-phase zones
O

O

Si

O

O

O

Si
O

Si

O

O

Si

O

O

O

Si

O
O

O
O

Si
Si
O

Si

O

O
O

O

O

O
O

O

Si
O

O

O

Si

O

Si
O

O
Si
Si

Si

O

O
O

O
O

Reactivity depends on the specific nano
structure of the hybrid material

3. Photochemistry

Example 1: Solar energy storage - solving the problem of back-reaction
Light

Py* - the donor
Py
Electron
transfer

Py* +
MV2+ - the acceptor
2MV.+ + 2H3O+
Useful reaction

Energy storing pair
2MV2+ + H2 + 2H2O

The classical problem:
MV.+ + Py+

MV.+ + Py+

back-reaction

MV2+ + Py

The nanoporosity approach:
I. Separate spatially the donor and the acceptor by entrapment in a sol-gel matrix
II. Allow them to communicate through the nanopores with a shuttler

Py*@silica + TV2+

TV+ + Py+@silica

MV2+@silica + TV+

TV+2 + MV+@silica
Four hours, 5% yield of separated pair

TV2+

N

N

Py
MV2+
2B r
The redox potential of the MV pair is smaller than that of the TV pair

TV+ + Py+@silica
A. Slama-Schwok, M. Ottolenghi

Py@silica + TV2+

Example 2: Affecting the direction of photochromism by tailoring
the surface of the nanopores
Isomerization of spiropyrans

D. Levy

Controlling the directionality of photochromism

Colorless

Colored

Reversed
photochromism in
silica sol-gel matrices

…but normal photochromism in ethylated silica

Colorless

Colored

3. Sensors:
Extraction of a library of reactivities from a single molecule

Getting a library of acid/base sensors from a single molecule
nanopore effects

+

Anionic
AF

Zwitterionic
ET(30)

Claudio Rottman

Affecting the immediate environment by co-entrapment of surfactants
within the nanocages

ET(30), an acid or a base – your choice: The interpretation

Continuous range of acids/bases by using a surfactant mixture at varying proportions

ET(30)

Huge pKi shift for AF: 8 orders of magnitude

4. Catalysis

1st example: Superior synergistic catalyst for green chemistry
Two components in a nano-cage: Catalytic synergism
Hydrogenation of chlorinated environmental pollutants
Chlorophenols

6h

OCH

2

+

CO 2 H

Cl

2,4,5-T

(44%)

H2O

Cl

O

=

OH

OH

24 h
ClCH 2 CH 2 Cl

Cl

(75 % )

(26%)

The combined catalyst:
Pd nanoparticles + [Rh(cod)Cl]2

Cl

PCBs
Cl 3

Cl 3

24 h
hexane

(99%)

H

DDT

Cl

C

Cl

24 h
hexane

CCl3

H

C

(90%)

CH3

Cl

Cl-dioxins

Cl

O
O
Cl

R. Abu-Reziq, J. Blum

24 h
ClCH 2 CH2Cl

O
(93%)
O

Mechanism suggested by Bianchini, Psaro et al:

The confinement of
the two catalysts
within a cage

C. Bianchini, R. Psaro et al, J. Am. Chem. Soc.

2nd example: One-pot multistep catalytic processes
with opposing reagents

A
a c id

B + C
base

D
Cutting the need for separation steps
F. Gelman, J. Blum

Three steps oxidation/reductions in one pot

RhCl[P(C6H5)3]3

F. Gelamn, J. Blum

91%

5. Imprinted nanoporosity

4th example: Tailored nanoporosity by imprinting
Directing the seterochemistry of a reaction
Forcing a cis-product in the Pd-acetate catalyzed Heck reaction

9:1
1:1

D. Tsvelikhovsky, J. Blum

Electrochemical recognition of the imprinting molecule: Dopa
L-Dopa

D-Dopa

HO

CH 2 CHNH

Current / mA

Current (mA)

HO

Silica sol-gel thin
films, 70 nm

2

COOH

HO
HO

HO

OH
HO

CH 2 CH 2 NH

HO

2

CH 2 CO 2 H

D. Mandler, S. Fireman

6. Enzymatic reactions - enhanced stability

Protection from heat
New, very mild entrapment method in alumina:
Al(C3H7O)3, pH 7.3, ultrasound

OVA@alumina

Very large shifts in the denaturing temperatures

V. Vinogradov, 2014/5

Not only thermal stability, but increase in activity up to 60oC

Acid phosphatase@Alumina

… and stability to repeated
cycles of heating to 60oC
and cooling

The activity at 750C, is higher than at
room temperature by about two
orders of magnitude.
# (AcP, 1): Treatment of enzyme deficiency
diseases

Arrhenius analysis
ACP@Alumina

oCoC
60-70
60-70

The pre-factor of the
entrapped enzyme
A = 3.54.1014 sec-1
six orders of
magnitude higher (!)
than that of the free
enzyme
4.34.108 sec-1

k  Ae

Ea
RT

7. Merging all of the above

Protection of an enzyme from strong oxidative conditions:
Alkaline phosphatase protected from bromine
VTS: An efficient bromine sponge
O
O

Si

O
O

O

O
O

HO

Si
H

Si

O

O
CH

OH

2

OH
Si

O

H

OH

O

Si
O

O

OH
Si
O

OH
HC

O

Si

Si

O
O

O

Si

C

Si

H

O

HO
OH
Si

O

O

HO

H 2C

O

H 2C

Si

O
Si

HO

H

CH

O

O

H

H

2

O
Si

C

H

O
CH

H 2C

H

Si

HO

H

silica cage

O

O

H

OH
H 2C

OH

O

-

O

Si

C

H 2C

CH

O
O Si C

O
Si

O Si
O

H

OH

Si

O

hydrobromination

O
O

O

Si
O

O
O

Si

Si

O

O
O

vinyl group
Si
HO

O

OH

OH
Si

O
O

OH

-

Br

Br

-

CH

O
HO

Br
H
O

2

H

H
Br

O

O

Si

H 2C

OH

O Si CH
O
CH

CH

OH
O

hydrobromic

O

Si
Br
OH
O H
O
C OH
O Si
O
H
CH 2
Si
Br

Br 2 /H
O2 O
Br 22 /H

HO

Si

O

H

H

O
Si
O

HO
H 2C
Br

C

Si

H
HO

O
O
Si

O

O

Br HO
H 2 C CH Si

Si
O

O
HO
Br
O
CH 2
CH OH
OH
Si
OH
OH OH
OH
Si
HC
HO
Si
Si
Si
O
O
O
Si
Si
O
O
O
Si
O
O
O
O
O
2

acid

H. Frenkel-Mullerad, R. Ben-Knaz, 2014

O

One-pot enzyme/catalyst pair

H 2C

C H (C H 2 ) 8 C O O H

+ CH 3 (CH 2 ) n CH 2 OH

Catal@S-G
H2

Lipase@S-G

A
a c id

B + C

CH 3 (CH 2 ) 9 COOCH

2

(CH 2 ) n CH 3

base

D

C a ta lys ts : R h 2 C o 2 (C O ) 1 2

0.6 mmol acid, 2.5 mmol alcohol
0.01 mmol catalyst, 11U lipase

F. Gelman, J. Blum

R h (P P h 3 ) 3 C l

Conclusion
Better materials based on chemistry
Better chemistry based on materials