Process Heat Application Technology MVR Used in Dryness & Concentration Processes 製程熱能應用技術實例 MVR應用於乾燥 & 濃縮製程 Chi-I Tuan 段紀義 Nov.1.2013 Energy utilization : 1.

Download Report

Transcript Process Heat Application Technology MVR Used in Dryness & Concentration Processes 製程熱能應用技術實例 MVR應用於乾燥 & 濃縮製程 Chi-I Tuan 段紀義 Nov.1.2013 Energy utilization : 1.

Slide 1

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 2

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 3

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 4

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 5

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 6

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 7

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 8

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 9

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 10

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 11

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 12

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 13

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 14

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 15

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 16

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 17

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 18

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 19

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 20

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 21

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 22

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 23

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 24

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 25

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 26

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 27

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 28

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 29

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 30

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 31

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 32

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 33

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35


Slide 34

Process Heat Application Technology
MVR Used in Dryness & Concentration Processes

製程熱能應用技術實例
MVR應用於乾燥 & 濃縮製程
Chi-I Tuan
段紀義

Nov.1.2013
1

Energy utilization :
1. Optimum 2. Reuse

2

Fig. Triple Effect Evaporator
3

機械蒸氣再壓縮技術, MVR
(Mechanical Vapor Recompression)

4

機械蒸氣再壓縮技術, MVR
 機械蒸氣再壓縮(MVR)技術是開放式的改良熱泵,
直接吸收製程排出低溫蒸氣,壓縮使蒸氣升溫後直
接回收再利用。
 不用冷媒,無熱交換器及膨脹閥,壓損小;壓縮機
比傳統熱泵小,電力需求大幅下降。

 這些機器在壓縮比1:1.2到1:2範圍內其體積流量
較高(壓縮比π是最終壓力P2與吸入壓力P1的比值)。
 能源效率亦用COP值判斷。

5

機械蒸氣再壓縮技術, MVR
 MVR技術一般均與真空蒸發器或蒸餾塔結合使用。

 理論上MVR可重複利用蒸氣潛熱,理論熱能效率可
超過100效蒸發器;甚至可完全停用外部鍋爐蒸氣
。但因壓縮機及馬達的實際操作能源轉換限制及系

統信號傳遞延遲,使熱效率無法達到此目標值
(APV, 2008)

 國際能源總署(IEA, 2010)公布:封閉式傳統電力熱
泵 COP值是3.0-8.0,而開放式具有MVR技術改良
熱泵COP值可達到10-40。
6

機械蒸氣再壓縮技術, MVR
 The compression ratio is influenced by:
1. The boiling point elevation of the liquid to be evaporated.
Higher the boiling point rise higher is the compression ratio
required.
2. Minimum differential temperature gradient required for
effective heat transfer. Indirect condensers require a
minimum temperature gradient across the fluids
exchanging heat. The condensers should be designed for
least ΔT operation.

3. Total system pressure drop in the piping and valves. Enough
size of piping and valve selection should be done for
minimum pressure drop during transfer of fluid through
them.
7

The work done is the area under the curve, given as WS
Ws = (P2 – P1)  Vs

= (P2 – P1)  Vs / 3600

Ws = Specific work done (kJ/kg)

kW = kJ / s = kPa m3 / s

P2 , P1 = final and initial pressure (kPa)
Vs = Specific Inlet volume (m3/kg).

(Everest Transmission, 2010)

=Flowrate (m3/hr)
8

機械蒸氣再壓縮技術, MVR
 Case Study:
 Taking a practical installation at one of the chemical
units where Mechanical Compressor is installed to
compress 1800 kg/hr (1.6729 m3/kg @ 100℃) of steam.

 The inlet design pressure P1 is 101.3 kPa, Vapor
temperature T1 is 102ºC and the compression ratio is 1.5
( P2 = P1 x 1.5 = 152 kPa)
 Ideal Specific Input work,
Ws = (152 – 101.3) x 1.6729 = 84.8 kJ/kg.
 Taking compressor overall efficiency 65%
Specific Energy input = Ws / 0.65
Specific Energy input = 130 kJ/kg ..… (1)
9

 Latent heat of evaporation of Water at 100ºC and 1 bar (as
per steam tables) is 2257 kJ/kg.
 It implies so by compressing the vapors through electrical
input energy of 130 kJ/kg, the process is able to recover
2257 kJ/kg of energy.
 Heat energy recovered on condensation: 2257 kJ/kg ...(2)
Performance Ratio = 2257 / 130 = 17.36 (COP)
 This ratio of 17.36 indicates that the process of Mechanical
Vapor Recompression is similar to a 17 stage evaporator,
making it highly energy efficient.
10

(APV, 2008)

11

(APV, 2008)

12

(PG&E, 2007)

13

(EPCON, 2011)

14

Advantages of Mechanical Vapor Compression (Everest
Transmission, 2010):
1. Low specific energy consumption
2. Higher Performance co-efficient
3. Gentle evaporation of the product due to low
temperature differences

4. Reduced load on cooling towers since no residual
vapor
5. Simplicity of process, operation & maintenance.
15

MVR應用範圍
蒸發濃縮 / 蒸發結晶 / 低溫蒸發 (ZNTECH, 2013)

 飲料工業(蔬/果菜汁、牛奶、乳清、糖溶液的蒸發濃
縮)
 食品及添加劑工業(牛/雞肉汁、蛋粉、麥芽糊精、檸
檬酸、味精、大豆、蛋白質乳液的蒸發濃縮)
 製藥及生物工程(中藥、維生素、氨基酸等)
 化學工業(蒸發濃縮、結晶、提純)

 廢水處理(造紙廢液、食品廢液、含鹽廢水、含重金
屬廢水、其他有毒有害廢水)
 其他(海水淡化、空調製冷及熱、電力工業等)
16

MVR技術參數

(周,2011)
 蒸發一噸水需要耗電為23-70度電;
 可以實現蒸發溫度17- 40℃的低溫蒸發(無需冷凍水
系統)
(陳, 2012)
 純水(沸點提升0℃)能耗為20~30kW。
 當物料沸點提升 5℃時,能耗為35~45kW。(約三效
蒸發的18%)
 當物料沸點提升10℃時,能耗為50~60kW。
 當物料沸點提升15℃時,能耗為65~70kW。
17

Cases Study Ⅰ
for JT combining

Three Effect fouling film Evaporator
with
Mechanical Vapor Recompression

18

19

MVR安裝前鍋爐
蒸氣用量

20

TVR
700

(2765-727)/3
=679

2765

727

21

MVR

22

1 mbar = 100 Pa = 0.1 kPa

23

 Design data:
P1 = 199.19 mbar = 19.919 kPa = 0.199 bar = 0.197 atm
T1 = 60 ℃ = 333 K
P2 = 250.08 mbar = 25.008 kPa
T2 = 65 ℃ = 338 K
atm  L
F = 1900 kg/h
R  0 . 082
gmole  K
PS = 32.5 kW
Cal.:
 = P2 / P1 = 25.008 / 19.919 = 1.25
VS = n × R × T / P
n = 1900 / 18 = 105.56 kgmole
VS = 105.56 × 0.082 × 333 / 0.197
= 14631 m3/h = 4.06 m3/s

COP 

1900  560

32.5  860
N = ( P2 - P1 ) × VS × f
= ( 25.008 - 19.919 ) × 4.06 × 1.5 = 30.99 kW

 38

25

Amp

T2
P2

Fin

P1

T1

Fout

26

 Actual data:
P1 = 0.13 bar = 13 kPa = 0.129 atm
T1 = 47.4 ℃ = 320.4 K
P2 = 0.17 bar = 17 kPa
T2 = 53 ℃ = 326 K
F = 1172 kg/h
PS 
3  kVA  cos 
A = 35.8 amp
Cal.:
 = P2 / P1 = 17 / 13 = 1.31
VS = n × R × T / P
n = 1172 / 18 = 65.11 kgmole
VS = 65.11 × 0.082 × 320.4 / 0.129
= 13260.6 m3/h = 3.69 m3/s
1172  569
COP 

22 . 14  860
N = ( P2 - P1 ) × VS × f
= ( 17 - 13 ) × 3.69 × 1.5 = 22.14 kW

 35

PS = 1.732 × 440 × 35.8 × 0.8 / 1000 = 21.83 kW
27

Benefit assessment

The yearly working time is 8000 hours.
1USD=30NTD

Feed
Vapor outlet
Steam consumption

kg/hr
kg/hr
kg/hr

MVR installed
Before
After
3,000
3,000
2,000
2,000
50↓
700

Unit prices (STM)

NTD/kg

2

2

Power (MVR) consum. KWh
0
Unit prices (electricity) NTD/kWh 3

50
3

Unit cost per hour
Unit cost per month

NTD/hr
NTD/m

1,400
1,008,000

250
180,000

Unit cost per year

NTD/yr

11,200,000 2,000,000

Money saving per year NTD/yr
USD/yr

-----

9,200,000
306,667

28

Cases Study Ⅱ
for MVR used to recover Boiler Blow-down water
(段, 2012)

29

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估

Pr o c e s s
De a e r a t o r
St e a m
F
T
H
St e a m
boi l e r
Bl o w d o wn
wa t e r
F
T
P
H

525
180
1003
111

△ H = 56

5525
34
217

F
T
P
H
△H

k g /h

k Pa
k Wh
k Wh

He a t
F
e xc ha nge r T
H

5525
25
161

Bo i l e r
f e e d wa t e r

F
T
H

525
90
55

Wa s t e wa t e r
s ys t e m

圖7-1標準鍋爐洩放水系統

30

蒸氣鍋爐洩放水及廢熱同時回收再利用效益評估
Bl o w d o wn
wa t e r

So f t
wa t e r
F
F
T
H

T
H

5100
25

525
68
41

148

525
180
1003
111

F
T
P
H

Co mp r e s s o r

425
76
41
311

F
T
P
H

Ev a p o r a t o r
St e a m

St e a m
△ H = 70
△ H = 277

F

△ H = 15

T
H

5100
37
218
Co n d e n s a t e

F
T
H

5525
39
253

De a e r a t o r

425
70

F

So f t
wa t e r
t a nk

F
T
H

T

31

P
H

310

425
70
35

F
Co n c e n t r a t e

T
H

圖7-3使用MVR設備的鍋爐洩放水熱交換系統

100
70
8

31

成本效益分析
 淨現值法(net present value, NPV) (駱和蕭,2007):指
在未來一段時間內,考量貨幣的時間價值,將未來價

值還原成現在價值;比較各期效益折現後的淨現值流
入及所有成本現值流出分別加總後的差異。
NPV



t N



t 1

CF t

1  r  t

 C0

 回收期間法(payback period, PP) (徐,2002):指各年
度現金流入與回收該投資案原先所投入的現金支出進

行比較,由回收期限的快慢來決定是否接受該投資案


PP



I
A

I


M

i

 M

o

32

 設備投資回收效益快。
項目

投資金額 節省金額

NPV5

PP

單位

US$

US$/y

US$

years

第肆章

CHP a

11,000

13,152

38,856

0.83

第伍章

HE a
+CHP
CHP

70,550

166,421

544,316

0.52

37,500

74,737

268,937

0.50

MVR a

98,750

99,025

307,272

1.00

EV a

38,333

7,697

-6,774

4.98

EV+MVR

83,333

34,526

58,230

2.41

第陸章
第柒章
a

CHP為傳統熱泵、HE為熱交換器、EV為真空蒸發器、MVR為機械蒸氣再
壓縮設備

33

References:
周正全,2011, MVR的原理及應用範圍, 江蘇樂科熱力有限公司,中國

段紀義,2011,狹點結合熱泵探討工業能源再利用,學位論文,台灣
徐燕山,2002,財務管理,第六版,東華書局,台北。
陳俠,2012,單級高速離心式蒸汽壓縮機在MVR系統中的應用,浙江
中能輕工機械有限公司,中國

駱尚廉、蕭代基,2007,環境經濟分析,曉園出版社,台北。
APV, 2008, Evaporator Handbook, APV, An SPX Brand, N.Y.
Everest Transmission, 2010, Vapor Recompression to Recover Low
Pressure Waste Steam, Everest Transmission, New Delhi, India.
EPCON,2011, Falling Film MVR Evaporators, EPCON Evaporation
Technology AS, Norway.
IEA, Heat Pump Centre, 2010, “Heat pump performance,” International
Energy Agency (IEA) Heat Pump Centre, Available at:
www.heatpumpcentre. org, Accessed 22 November 2010.
PGE, 2007, Performance Study of a Mechanical Vapor Recompression
(MVR) Evaporation System, Pacific Gas and Electric Company, California,
U.A.

34

Thanks for Your
Attention!

35