3D Segmentation Using Level Set Methods Zsolt Husz Heriot-Watt University, Mokhled Al-Tarawneh Edinburgh, Scotland Ízzet Canarslan University of Newcastle upon Tyne, Istanbul Technical University, England Turkey Péter Horváth University of Szeged, Hungary Sebahattin Topal Middle.

Download Report

Transcript 3D Segmentation Using Level Set Methods Zsolt Husz Heriot-Watt University, Mokhled Al-Tarawneh Edinburgh, Scotland Ízzet Canarslan University of Newcastle upon Tyne, Istanbul Technical University, England Turkey Péter Horváth University of Szeged, Hungary Sebahattin Topal Middle.

Slide 1

3D Segmentation
Using
Level Set Methods

Zsolt Husz
Heriot-Watt University,
Mokhled Al-Tarawneh Edinburgh, Scotland
Ízzet Canarslan
University of Newcastle upon Tyne,
Istanbul Technical University,
England
Turkey

Péter Horváth
University of Szeged,
Hungary

Sebahattin Topal
Middle East Technical University,
Ankara, Turkey

3D Segmentation Using
Level Set Methods
Input: Medical and/or other images
Operation: Compute gradient image. Define a
transform, for example polar, a cost function, for
example circumference and gradient. Minimize path
in transformed data by cost minimization. Alternative,
use a snake for example using Greedy algorithm.

The object is to find an algorithm to link the points
identified on a gradient map to give continuous
enclosing contours. Think out extension to 3d

Output: Contour (with image)

Gradient
Initialization

Narrow Band

Visualisation /
Post-processing

Reinitialisation

Level Set

• Browse between images
• Initialize a sphere
• Initialize a region in a slice
• Replicate or clear region
• Starting process
• End program

Active Contours
[Kass, Witkin, Terzopoulos ’88]

E ()  EInt ()  EExt ()
1
2

2

EInt ()    ' ( s )   ' ' ( s ) ds
0

EExt ()   I

Problems:
• Initialization
• Topological changes
• 3D implementation

2

Level-Set methods
[Osher and Sethian ‘88]

Embed the contour to a higher dimension space level
set function: .
E ( )  L( )  A( )  E Ext ( )
E
E

1
Ext

2
Ext

 0

( )    N  I ( p ) dp
( )  1 

( I ( p )  1 )
2

2
1

2

dp   2 

( I ( p)   2 )
2

2
2

2

dp

Level set extension to 3D

The contour moves in a 3D space (3)

E ( )  S ( )  V ( )  E

1
Ext

( )

Energy minimization: Gradient Descent Method
local optimization 

E ( )
t

E ( )
t



S ( )
t



V ( )

      I

 I  I xx  I yy  I zz
2

t
2



E

1
Ext

t

( )

Visualisation
• Interface between algorithms: 3D matrix
volume
• 3D volume matrix
• Conversion to VRML → flexibility
Two approaches:
• triangular mesh
• marching cubes

Examples:

Conclusions
• Pros
– noise prone
– 3D segmentation is natural
– isolated components are permitted

• Cons
– LS is parameterised
– LS slower than 3D snakes
– processing resources (CPU, memory)

• Future work
– automatic parameter adjustment
– multi-scale processing
– combined intensity and edge based segmentation

References
[1] S. Osher and J. A. Sethian, “Fronts propagating with curvature
dependent speed: Algorithms based on Hamilton-Jacobi
formulations”, J. Comp. Phys., vol. 79, pp.12–49, 1988
[2] M. Kass, A. Witkin, and D. Terzopoulos. Snakes, “Active Contour
Models”, International Journal of Computer Vision 1(4), pp.321–331,
1988
[3] T. Chan and L. Vese, “An Active Contour Model without Edges” in
SCALE-SPACE ’99: Proceedings of the Second International
Conference on Scale-Space Theories in Computer Vision, pp. 141–
151, Springer-Verlag, 1999

[4] C. Xu and J. L. Prince, “Snakes, Shapes, Gradient Vector Flow”,
IEEE Transactions on Image Processing, Vol. 7, no. 3, pp. 359-369,
1998

Thank you for your attention

Questions?


Slide 2

3D Segmentation
Using
Level Set Methods

Zsolt Husz
Heriot-Watt University,
Mokhled Al-Tarawneh Edinburgh, Scotland
Ízzet Canarslan
University of Newcastle upon Tyne,
Istanbul Technical University,
England
Turkey

Péter Horváth
University of Szeged,
Hungary

Sebahattin Topal
Middle East Technical University,
Ankara, Turkey

3D Segmentation Using
Level Set Methods
Input: Medical and/or other images
Operation: Compute gradient image. Define a
transform, for example polar, a cost function, for
example circumference and gradient. Minimize path
in transformed data by cost minimization. Alternative,
use a snake for example using Greedy algorithm.

The object is to find an algorithm to link the points
identified on a gradient map to give continuous
enclosing contours. Think out extension to 3d

Output: Contour (with image)

Gradient
Initialization

Narrow Band

Visualisation /
Post-processing

Reinitialisation

Level Set

• Browse between images
• Initialize a sphere
• Initialize a region in a slice
• Replicate or clear region
• Starting process
• End program

Active Contours
[Kass, Witkin, Terzopoulos ’88]

E ()  EInt ()  EExt ()
1
2

2

EInt ()    ' ( s )   ' ' ( s ) ds
0

EExt ()   I

Problems:
• Initialization
• Topological changes
• 3D implementation

2

Level-Set methods
[Osher and Sethian ‘88]

Embed the contour to a higher dimension space level
set function: .
E ( )  L( )  A( )  E Ext ( )
E
E

1
Ext

2
Ext

 0

( )    N  I ( p ) dp
( )  1 

( I ( p )  1 )
2

2
1

2

dp   2 

( I ( p)   2 )
2

2
2

2

dp

Level set extension to 3D

The contour moves in a 3D space (3)

E ( )  S ( )  V ( )  E

1
Ext

( )

Energy minimization: Gradient Descent Method
local optimization 

E ( )
t

E ( )
t



S ( )
t



V ( )

      I

 I  I xx  I yy  I zz
2

t
2



E

1
Ext

t

( )

Visualisation
• Interface between algorithms: 3D matrix
volume
• 3D volume matrix
• Conversion to VRML → flexibility
Two approaches:
• triangular mesh
• marching cubes

Examples:

Conclusions
• Pros
– noise prone
– 3D segmentation is natural
– isolated components are permitted

• Cons
– LS is parameterised
– LS slower than 3D snakes
– processing resources (CPU, memory)

• Future work
– automatic parameter adjustment
– multi-scale processing
– combined intensity and edge based segmentation

References
[1] S. Osher and J. A. Sethian, “Fronts propagating with curvature
dependent speed: Algorithms based on Hamilton-Jacobi
formulations”, J. Comp. Phys., vol. 79, pp.12–49, 1988
[2] M. Kass, A. Witkin, and D. Terzopoulos. Snakes, “Active Contour
Models”, International Journal of Computer Vision 1(4), pp.321–331,
1988
[3] T. Chan and L. Vese, “An Active Contour Model without Edges” in
SCALE-SPACE ’99: Proceedings of the Second International
Conference on Scale-Space Theories in Computer Vision, pp. 141–
151, Springer-Verlag, 1999

[4] C. Xu and J. L. Prince, “Snakes, Shapes, Gradient Vector Flow”,
IEEE Transactions on Image Processing, Vol. 7, no. 3, pp. 359-369,
1998

Thank you for your attention

Questions?


Slide 3

3D Segmentation
Using
Level Set Methods

Zsolt Husz
Heriot-Watt University,
Mokhled Al-Tarawneh Edinburgh, Scotland
Ízzet Canarslan
University of Newcastle upon Tyne,
Istanbul Technical University,
England
Turkey

Péter Horváth
University of Szeged,
Hungary

Sebahattin Topal
Middle East Technical University,
Ankara, Turkey

3D Segmentation Using
Level Set Methods
Input: Medical and/or other images
Operation: Compute gradient image. Define a
transform, for example polar, a cost function, for
example circumference and gradient. Minimize path
in transformed data by cost minimization. Alternative,
use a snake for example using Greedy algorithm.

The object is to find an algorithm to link the points
identified on a gradient map to give continuous
enclosing contours. Think out extension to 3d

Output: Contour (with image)

Gradient
Initialization

Narrow Band

Visualisation /
Post-processing

Reinitialisation

Level Set

• Browse between images
• Initialize a sphere
• Initialize a region in a slice
• Replicate or clear region
• Starting process
• End program

Active Contours
[Kass, Witkin, Terzopoulos ’88]

E ()  EInt ()  EExt ()
1
2

2

EInt ()    ' ( s )   ' ' ( s ) ds
0

EExt ()   I

Problems:
• Initialization
• Topological changes
• 3D implementation

2

Level-Set methods
[Osher and Sethian ‘88]

Embed the contour to a higher dimension space level
set function: .
E ( )  L( )  A( )  E Ext ( )
E
E

1
Ext

2
Ext

 0

( )    N  I ( p ) dp
( )  1 

( I ( p )  1 )
2

2
1

2

dp   2 

( I ( p)   2 )
2

2
2

2

dp

Level set extension to 3D

The contour moves in a 3D space (3)

E ( )  S ( )  V ( )  E

1
Ext

( )

Energy minimization: Gradient Descent Method
local optimization 

E ( )
t

E ( )
t



S ( )
t



V ( )

      I

 I  I xx  I yy  I zz
2

t
2



E

1
Ext

t

( )

Visualisation
• Interface between algorithms: 3D matrix
volume
• 3D volume matrix
• Conversion to VRML → flexibility
Two approaches:
• triangular mesh
• marching cubes

Examples:

Conclusions
• Pros
– noise prone
– 3D segmentation is natural
– isolated components are permitted

• Cons
– LS is parameterised
– LS slower than 3D snakes
– processing resources (CPU, memory)

• Future work
– automatic parameter adjustment
– multi-scale processing
– combined intensity and edge based segmentation

References
[1] S. Osher and J. A. Sethian, “Fronts propagating with curvature
dependent speed: Algorithms based on Hamilton-Jacobi
formulations”, J. Comp. Phys., vol. 79, pp.12–49, 1988
[2] M. Kass, A. Witkin, and D. Terzopoulos. Snakes, “Active Contour
Models”, International Journal of Computer Vision 1(4), pp.321–331,
1988
[3] T. Chan and L. Vese, “An Active Contour Model without Edges” in
SCALE-SPACE ’99: Proceedings of the Second International
Conference on Scale-Space Theories in Computer Vision, pp. 141–
151, Springer-Verlag, 1999

[4] C. Xu and J. L. Prince, “Snakes, Shapes, Gradient Vector Flow”,
IEEE Transactions on Image Processing, Vol. 7, no. 3, pp. 359-369,
1998

Thank you for your attention

Questions?


Slide 4

3D Segmentation
Using
Level Set Methods

Zsolt Husz
Heriot-Watt University,
Mokhled Al-Tarawneh Edinburgh, Scotland
Ízzet Canarslan
University of Newcastle upon Tyne,
Istanbul Technical University,
England
Turkey

Péter Horváth
University of Szeged,
Hungary

Sebahattin Topal
Middle East Technical University,
Ankara, Turkey

3D Segmentation Using
Level Set Methods
Input: Medical and/or other images
Operation: Compute gradient image. Define a
transform, for example polar, a cost function, for
example circumference and gradient. Minimize path
in transformed data by cost minimization. Alternative,
use a snake for example using Greedy algorithm.

The object is to find an algorithm to link the points
identified on a gradient map to give continuous
enclosing contours. Think out extension to 3d

Output: Contour (with image)

Gradient
Initialization

Narrow Band

Visualisation /
Post-processing

Reinitialisation

Level Set

• Browse between images
• Initialize a sphere
• Initialize a region in a slice
• Replicate or clear region
• Starting process
• End program

Active Contours
[Kass, Witkin, Terzopoulos ’88]

E ()  EInt ()  EExt ()
1
2

2

EInt ()    ' ( s )   ' ' ( s ) ds
0

EExt ()   I

Problems:
• Initialization
• Topological changes
• 3D implementation

2

Level-Set methods
[Osher and Sethian ‘88]

Embed the contour to a higher dimension space level
set function: .
E ( )  L( )  A( )  E Ext ( )
E
E

1
Ext

2
Ext

 0

( )    N  I ( p ) dp
( )  1 

( I ( p )  1 )
2

2
1

2

dp   2 

( I ( p)   2 )
2

2
2

2

dp

Level set extension to 3D

The contour moves in a 3D space (3)

E ( )  S ( )  V ( )  E

1
Ext

( )

Energy minimization: Gradient Descent Method
local optimization 

E ( )
t

E ( )
t



S ( )
t



V ( )

      I

 I  I xx  I yy  I zz
2

t
2



E

1
Ext

t

( )

Visualisation
• Interface between algorithms: 3D matrix
volume
• 3D volume matrix
• Conversion to VRML → flexibility
Two approaches:
• triangular mesh
• marching cubes

Examples:

Conclusions
• Pros
– noise prone
– 3D segmentation is natural
– isolated components are permitted

• Cons
– LS is parameterised
– LS slower than 3D snakes
– processing resources (CPU, memory)

• Future work
– automatic parameter adjustment
– multi-scale processing
– combined intensity and edge based segmentation

References
[1] S. Osher and J. A. Sethian, “Fronts propagating with curvature
dependent speed: Algorithms based on Hamilton-Jacobi
formulations”, J. Comp. Phys., vol. 79, pp.12–49, 1988
[2] M. Kass, A. Witkin, and D. Terzopoulos. Snakes, “Active Contour
Models”, International Journal of Computer Vision 1(4), pp.321–331,
1988
[3] T. Chan and L. Vese, “An Active Contour Model without Edges” in
SCALE-SPACE ’99: Proceedings of the Second International
Conference on Scale-Space Theories in Computer Vision, pp. 141–
151, Springer-Verlag, 1999

[4] C. Xu and J. L. Prince, “Snakes, Shapes, Gradient Vector Flow”,
IEEE Transactions on Image Processing, Vol. 7, no. 3, pp. 359-369,
1998

Thank you for your attention

Questions?


Slide 5

3D Segmentation
Using
Level Set Methods

Zsolt Husz
Heriot-Watt University,
Mokhled Al-Tarawneh Edinburgh, Scotland
Ízzet Canarslan
University of Newcastle upon Tyne,
Istanbul Technical University,
England
Turkey

Péter Horváth
University of Szeged,
Hungary

Sebahattin Topal
Middle East Technical University,
Ankara, Turkey

3D Segmentation Using
Level Set Methods
Input: Medical and/or other images
Operation: Compute gradient image. Define a
transform, for example polar, a cost function, for
example circumference and gradient. Minimize path
in transformed data by cost minimization. Alternative,
use a snake for example using Greedy algorithm.

The object is to find an algorithm to link the points
identified on a gradient map to give continuous
enclosing contours. Think out extension to 3d

Output: Contour (with image)

Gradient
Initialization

Narrow Band

Visualisation /
Post-processing

Reinitialisation

Level Set

• Browse between images
• Initialize a sphere
• Initialize a region in a slice
• Replicate or clear region
• Starting process
• End program

Active Contours
[Kass, Witkin, Terzopoulos ’88]

E ()  EInt ()  EExt ()
1
2

2

EInt ()    ' ( s )   ' ' ( s ) ds
0

EExt ()   I

Problems:
• Initialization
• Topological changes
• 3D implementation

2

Level-Set methods
[Osher and Sethian ‘88]

Embed the contour to a higher dimension space level
set function: .
E ( )  L( )  A( )  E Ext ( )
E
E

1
Ext

2
Ext

 0

( )    N  I ( p ) dp
( )  1 

( I ( p )  1 )
2

2
1

2

dp   2 

( I ( p)   2 )
2

2
2

2

dp

Level set extension to 3D

The contour moves in a 3D space (3)

E ( )  S ( )  V ( )  E

1
Ext

( )

Energy minimization: Gradient Descent Method
local optimization 

E ( )
t

E ( )
t



S ( )
t



V ( )

      I

 I  I xx  I yy  I zz
2

t
2



E

1
Ext

t

( )

Visualisation
• Interface between algorithms: 3D matrix
volume
• 3D volume matrix
• Conversion to VRML → flexibility
Two approaches:
• triangular mesh
• marching cubes

Examples:

Conclusions
• Pros
– noise prone
– 3D segmentation is natural
– isolated components are permitted

• Cons
– LS is parameterised
– LS slower than 3D snakes
– processing resources (CPU, memory)

• Future work
– automatic parameter adjustment
– multi-scale processing
– combined intensity and edge based segmentation

References
[1] S. Osher and J. A. Sethian, “Fronts propagating with curvature
dependent speed: Algorithms based on Hamilton-Jacobi
formulations”, J. Comp. Phys., vol. 79, pp.12–49, 1988
[2] M. Kass, A. Witkin, and D. Terzopoulos. Snakes, “Active Contour
Models”, International Journal of Computer Vision 1(4), pp.321–331,
1988
[3] T. Chan and L. Vese, “An Active Contour Model without Edges” in
SCALE-SPACE ’99: Proceedings of the Second International
Conference on Scale-Space Theories in Computer Vision, pp. 141–
151, Springer-Verlag, 1999

[4] C. Xu and J. L. Prince, “Snakes, Shapes, Gradient Vector Flow”,
IEEE Transactions on Image Processing, Vol. 7, no. 3, pp. 359-369,
1998

Thank you for your attention

Questions?


Slide 6

3D Segmentation
Using
Level Set Methods

Zsolt Husz
Heriot-Watt University,
Mokhled Al-Tarawneh Edinburgh, Scotland
Ízzet Canarslan
University of Newcastle upon Tyne,
Istanbul Technical University,
England
Turkey

Péter Horváth
University of Szeged,
Hungary

Sebahattin Topal
Middle East Technical University,
Ankara, Turkey

3D Segmentation Using
Level Set Methods
Input: Medical and/or other images
Operation: Compute gradient image. Define a
transform, for example polar, a cost function, for
example circumference and gradient. Minimize path
in transformed data by cost minimization. Alternative,
use a snake for example using Greedy algorithm.

The object is to find an algorithm to link the points
identified on a gradient map to give continuous
enclosing contours. Think out extension to 3d

Output: Contour (with image)

Gradient
Initialization

Narrow Band

Visualisation /
Post-processing

Reinitialisation

Level Set

• Browse between images
• Initialize a sphere
• Initialize a region in a slice
• Replicate or clear region
• Starting process
• End program

Active Contours
[Kass, Witkin, Terzopoulos ’88]

E ()  EInt ()  EExt ()
1
2

2

EInt ()    ' ( s )   ' ' ( s ) ds
0

EExt ()   I

Problems:
• Initialization
• Topological changes
• 3D implementation

2

Level-Set methods
[Osher and Sethian ‘88]

Embed the contour to a higher dimension space level
set function: .
E ( )  L( )  A( )  E Ext ( )
E
E

1
Ext

2
Ext

 0

( )    N  I ( p ) dp
( )  1 

( I ( p )  1 )
2

2
1

2

dp   2 

( I ( p)   2 )
2

2
2

2

dp

Level set extension to 3D

The contour moves in a 3D space (3)

E ( )  S ( )  V ( )  E

1
Ext

( )

Energy minimization: Gradient Descent Method
local optimization 

E ( )
t

E ( )
t



S ( )
t



V ( )

      I

 I  I xx  I yy  I zz
2

t
2



E

1
Ext

t

( )

Visualisation
• Interface between algorithms: 3D matrix
volume
• 3D volume matrix
• Conversion to VRML → flexibility
Two approaches:
• triangular mesh
• marching cubes

Examples:

Conclusions
• Pros
– noise prone
– 3D segmentation is natural
– isolated components are permitted

• Cons
– LS is parameterised
– LS slower than 3D snakes
– processing resources (CPU, memory)

• Future work
– automatic parameter adjustment
– multi-scale processing
– combined intensity and edge based segmentation

References
[1] S. Osher and J. A. Sethian, “Fronts propagating with curvature
dependent speed: Algorithms based on Hamilton-Jacobi
formulations”, J. Comp. Phys., vol. 79, pp.12–49, 1988
[2] M. Kass, A. Witkin, and D. Terzopoulos. Snakes, “Active Contour
Models”, International Journal of Computer Vision 1(4), pp.321–331,
1988
[3] T. Chan and L. Vese, “An Active Contour Model without Edges” in
SCALE-SPACE ’99: Proceedings of the Second International
Conference on Scale-Space Theories in Computer Vision, pp. 141–
151, Springer-Verlag, 1999

[4] C. Xu and J. L. Prince, “Snakes, Shapes, Gradient Vector Flow”,
IEEE Transactions on Image Processing, Vol. 7, no. 3, pp. 359-369,
1998

Thank you for your attention

Questions?


Slide 7

3D Segmentation
Using
Level Set Methods

Zsolt Husz
Heriot-Watt University,
Mokhled Al-Tarawneh Edinburgh, Scotland
Ízzet Canarslan
University of Newcastle upon Tyne,
Istanbul Technical University,
England
Turkey

Péter Horváth
University of Szeged,
Hungary

Sebahattin Topal
Middle East Technical University,
Ankara, Turkey

3D Segmentation Using
Level Set Methods
Input: Medical and/or other images
Operation: Compute gradient image. Define a
transform, for example polar, a cost function, for
example circumference and gradient. Minimize path
in transformed data by cost minimization. Alternative,
use a snake for example using Greedy algorithm.

The object is to find an algorithm to link the points
identified on a gradient map to give continuous
enclosing contours. Think out extension to 3d

Output: Contour (with image)

Gradient
Initialization

Narrow Band

Visualisation /
Post-processing

Reinitialisation

Level Set

• Browse between images
• Initialize a sphere
• Initialize a region in a slice
• Replicate or clear region
• Starting process
• End program

Active Contours
[Kass, Witkin, Terzopoulos ’88]

E ()  EInt ()  EExt ()
1
2

2

EInt ()    ' ( s )   ' ' ( s ) ds
0

EExt ()   I

Problems:
• Initialization
• Topological changes
• 3D implementation

2

Level-Set methods
[Osher and Sethian ‘88]

Embed the contour to a higher dimension space level
set function: .
E ( )  L( )  A( )  E Ext ( )
E
E

1
Ext

2
Ext

 0

( )    N  I ( p ) dp
( )  1 

( I ( p )  1 )
2

2
1

2

dp   2 

( I ( p)   2 )
2

2
2

2

dp

Level set extension to 3D

The contour moves in a 3D space (3)

E ( )  S ( )  V ( )  E

1
Ext

( )

Energy minimization: Gradient Descent Method
local optimization 

E ( )
t

E ( )
t



S ( )
t



V ( )

      I

 I  I xx  I yy  I zz
2

t
2



E

1
Ext

t

( )

Visualisation
• Interface between algorithms: 3D matrix
volume
• 3D volume matrix
• Conversion to VRML → flexibility
Two approaches:
• triangular mesh
• marching cubes

Examples:

Conclusions
• Pros
– noise prone
– 3D segmentation is natural
– isolated components are permitted

• Cons
– LS is parameterised
– LS slower than 3D snakes
– processing resources (CPU, memory)

• Future work
– automatic parameter adjustment
– multi-scale processing
– combined intensity and edge based segmentation

References
[1] S. Osher and J. A. Sethian, “Fronts propagating with curvature
dependent speed: Algorithms based on Hamilton-Jacobi
formulations”, J. Comp. Phys., vol. 79, pp.12–49, 1988
[2] M. Kass, A. Witkin, and D. Terzopoulos. Snakes, “Active Contour
Models”, International Journal of Computer Vision 1(4), pp.321–331,
1988
[3] T. Chan and L. Vese, “An Active Contour Model without Edges” in
SCALE-SPACE ’99: Proceedings of the Second International
Conference on Scale-Space Theories in Computer Vision, pp. 141–
151, Springer-Verlag, 1999

[4] C. Xu and J. L. Prince, “Snakes, Shapes, Gradient Vector Flow”,
IEEE Transactions on Image Processing, Vol. 7, no. 3, pp. 359-369,
1998

Thank you for your attention

Questions?


Slide 8

3D Segmentation
Using
Level Set Methods

Zsolt Husz
Heriot-Watt University,
Mokhled Al-Tarawneh Edinburgh, Scotland
Ízzet Canarslan
University of Newcastle upon Tyne,
Istanbul Technical University,
England
Turkey

Péter Horváth
University of Szeged,
Hungary

Sebahattin Topal
Middle East Technical University,
Ankara, Turkey

3D Segmentation Using
Level Set Methods
Input: Medical and/or other images
Operation: Compute gradient image. Define a
transform, for example polar, a cost function, for
example circumference and gradient. Minimize path
in transformed data by cost minimization. Alternative,
use a snake for example using Greedy algorithm.

The object is to find an algorithm to link the points
identified on a gradient map to give continuous
enclosing contours. Think out extension to 3d

Output: Contour (with image)

Gradient
Initialization

Narrow Band

Visualisation /
Post-processing

Reinitialisation

Level Set

• Browse between images
• Initialize a sphere
• Initialize a region in a slice
• Replicate or clear region
• Starting process
• End program

Active Contours
[Kass, Witkin, Terzopoulos ’88]

E ()  EInt ()  EExt ()
1
2

2

EInt ()    ' ( s )   ' ' ( s ) ds
0

EExt ()   I

Problems:
• Initialization
• Topological changes
• 3D implementation

2

Level-Set methods
[Osher and Sethian ‘88]

Embed the contour to a higher dimension space level
set function: .
E ( )  L( )  A( )  E Ext ( )
E
E

1
Ext

2
Ext

 0

( )    N  I ( p ) dp
( )  1 

( I ( p )  1 )
2

2
1

2

dp   2 

( I ( p)   2 )
2

2
2

2

dp

Level set extension to 3D

The contour moves in a 3D space (3)

E ( )  S ( )  V ( )  E

1
Ext

( )

Energy minimization: Gradient Descent Method
local optimization 

E ( )
t

E ( )
t



S ( )
t



V ( )

      I

 I  I xx  I yy  I zz
2

t
2



E

1
Ext

t

( )

Visualisation
• Interface between algorithms: 3D matrix
volume
• 3D volume matrix
• Conversion to VRML → flexibility
Two approaches:
• triangular mesh
• marching cubes

Examples:

Conclusions
• Pros
– noise prone
– 3D segmentation is natural
– isolated components are permitted

• Cons
– LS is parameterised
– LS slower than 3D snakes
– processing resources (CPU, memory)

• Future work
– automatic parameter adjustment
– multi-scale processing
– combined intensity and edge based segmentation

References
[1] S. Osher and J. A. Sethian, “Fronts propagating with curvature
dependent speed: Algorithms based on Hamilton-Jacobi
formulations”, J. Comp. Phys., vol. 79, pp.12–49, 1988
[2] M. Kass, A. Witkin, and D. Terzopoulos. Snakes, “Active Contour
Models”, International Journal of Computer Vision 1(4), pp.321–331,
1988
[3] T. Chan and L. Vese, “An Active Contour Model without Edges” in
SCALE-SPACE ’99: Proceedings of the Second International
Conference on Scale-Space Theories in Computer Vision, pp. 141–
151, Springer-Verlag, 1999

[4] C. Xu and J. L. Prince, “Snakes, Shapes, Gradient Vector Flow”,
IEEE Transactions on Image Processing, Vol. 7, no. 3, pp. 359-369,
1998

Thank you for your attention

Questions?


Slide 9

3D Segmentation
Using
Level Set Methods

Zsolt Husz
Heriot-Watt University,
Mokhled Al-Tarawneh Edinburgh, Scotland
Ízzet Canarslan
University of Newcastle upon Tyne,
Istanbul Technical University,
England
Turkey

Péter Horváth
University of Szeged,
Hungary

Sebahattin Topal
Middle East Technical University,
Ankara, Turkey

3D Segmentation Using
Level Set Methods
Input: Medical and/or other images
Operation: Compute gradient image. Define a
transform, for example polar, a cost function, for
example circumference and gradient. Minimize path
in transformed data by cost minimization. Alternative,
use a snake for example using Greedy algorithm.

The object is to find an algorithm to link the points
identified on a gradient map to give continuous
enclosing contours. Think out extension to 3d

Output: Contour (with image)

Gradient
Initialization

Narrow Band

Visualisation /
Post-processing

Reinitialisation

Level Set

• Browse between images
• Initialize a sphere
• Initialize a region in a slice
• Replicate or clear region
• Starting process
• End program

Active Contours
[Kass, Witkin, Terzopoulos ’88]

E ()  EInt ()  EExt ()
1
2

2

EInt ()    ' ( s )   ' ' ( s ) ds
0

EExt ()   I

Problems:
• Initialization
• Topological changes
• 3D implementation

2

Level-Set methods
[Osher and Sethian ‘88]

Embed the contour to a higher dimension space level
set function: .
E ( )  L( )  A( )  E Ext ( )
E
E

1
Ext

2
Ext

 0

( )    N  I ( p ) dp
( )  1 

( I ( p )  1 )
2

2
1

2

dp   2 

( I ( p)   2 )
2

2
2

2

dp

Level set extension to 3D

The contour moves in a 3D space (3)

E ( )  S ( )  V ( )  E

1
Ext

( )

Energy minimization: Gradient Descent Method
local optimization 

E ( )
t

E ( )
t



S ( )
t



V ( )

      I

 I  I xx  I yy  I zz
2

t
2



E

1
Ext

t

( )

Visualisation
• Interface between algorithms: 3D matrix
volume
• 3D volume matrix
• Conversion to VRML → flexibility
Two approaches:
• triangular mesh
• marching cubes

Examples:

Conclusions
• Pros
– noise prone
– 3D segmentation is natural
– isolated components are permitted

• Cons
– LS is parameterised
– LS slower than 3D snakes
– processing resources (CPU, memory)

• Future work
– automatic parameter adjustment
– multi-scale processing
– combined intensity and edge based segmentation

References
[1] S. Osher and J. A. Sethian, “Fronts propagating with curvature
dependent speed: Algorithms based on Hamilton-Jacobi
formulations”, J. Comp. Phys., vol. 79, pp.12–49, 1988
[2] M. Kass, A. Witkin, and D. Terzopoulos. Snakes, “Active Contour
Models”, International Journal of Computer Vision 1(4), pp.321–331,
1988
[3] T. Chan and L. Vese, “An Active Contour Model without Edges” in
SCALE-SPACE ’99: Proceedings of the Second International
Conference on Scale-Space Theories in Computer Vision, pp. 141–
151, Springer-Verlag, 1999

[4] C. Xu and J. L. Prince, “Snakes, Shapes, Gradient Vector Flow”,
IEEE Transactions on Image Processing, Vol. 7, no. 3, pp. 359-369,
1998

Thank you for your attention

Questions?


Slide 10

3D Segmentation
Using
Level Set Methods

Zsolt Husz
Heriot-Watt University,
Mokhled Al-Tarawneh Edinburgh, Scotland
Ízzet Canarslan
University of Newcastle upon Tyne,
Istanbul Technical University,
England
Turkey

Péter Horváth
University of Szeged,
Hungary

Sebahattin Topal
Middle East Technical University,
Ankara, Turkey

3D Segmentation Using
Level Set Methods
Input: Medical and/or other images
Operation: Compute gradient image. Define a
transform, for example polar, a cost function, for
example circumference and gradient. Minimize path
in transformed data by cost minimization. Alternative,
use a snake for example using Greedy algorithm.

The object is to find an algorithm to link the points
identified on a gradient map to give continuous
enclosing contours. Think out extension to 3d

Output: Contour (with image)

Gradient
Initialization

Narrow Band

Visualisation /
Post-processing

Reinitialisation

Level Set

• Browse between images
• Initialize a sphere
• Initialize a region in a slice
• Replicate or clear region
• Starting process
• End program

Active Contours
[Kass, Witkin, Terzopoulos ’88]

E ()  EInt ()  EExt ()
1
2

2

EInt ()    ' ( s )   ' ' ( s ) ds
0

EExt ()   I

Problems:
• Initialization
• Topological changes
• 3D implementation

2

Level-Set methods
[Osher and Sethian ‘88]

Embed the contour to a higher dimension space level
set function: .
E ( )  L( )  A( )  E Ext ( )
E
E

1
Ext

2
Ext

 0

( )    N  I ( p ) dp
( )  1 

( I ( p )  1 )
2

2
1

2

dp   2 

( I ( p)   2 )
2

2
2

2

dp

Level set extension to 3D

The contour moves in a 3D space (3)

E ( )  S ( )  V ( )  E

1
Ext

( )

Energy minimization: Gradient Descent Method
local optimization 

E ( )
t

E ( )
t



S ( )
t



V ( )

      I

 I  I xx  I yy  I zz
2

t
2



E

1
Ext

t

( )

Visualisation
• Interface between algorithms: 3D matrix
volume
• 3D volume matrix
• Conversion to VRML → flexibility
Two approaches:
• triangular mesh
• marching cubes

Examples:

Conclusions
• Pros
– noise prone
– 3D segmentation is natural
– isolated components are permitted

• Cons
– LS is parameterised
– LS slower than 3D snakes
– processing resources (CPU, memory)

• Future work
– automatic parameter adjustment
– multi-scale processing
– combined intensity and edge based segmentation

References
[1] S. Osher and J. A. Sethian, “Fronts propagating with curvature
dependent speed: Algorithms based on Hamilton-Jacobi
formulations”, J. Comp. Phys., vol. 79, pp.12–49, 1988
[2] M. Kass, A. Witkin, and D. Terzopoulos. Snakes, “Active Contour
Models”, International Journal of Computer Vision 1(4), pp.321–331,
1988
[3] T. Chan and L. Vese, “An Active Contour Model without Edges” in
SCALE-SPACE ’99: Proceedings of the Second International
Conference on Scale-Space Theories in Computer Vision, pp. 141–
151, Springer-Verlag, 1999

[4] C. Xu and J. L. Prince, “Snakes, Shapes, Gradient Vector Flow”,
IEEE Transactions on Image Processing, Vol. 7, no. 3, pp. 359-369,
1998

Thank you for your attention

Questions?


Slide 11

3D Segmentation
Using
Level Set Methods

Zsolt Husz
Heriot-Watt University,
Mokhled Al-Tarawneh Edinburgh, Scotland
Ízzet Canarslan
University of Newcastle upon Tyne,
Istanbul Technical University,
England
Turkey

Péter Horváth
University of Szeged,
Hungary

Sebahattin Topal
Middle East Technical University,
Ankara, Turkey

3D Segmentation Using
Level Set Methods
Input: Medical and/or other images
Operation: Compute gradient image. Define a
transform, for example polar, a cost function, for
example circumference and gradient. Minimize path
in transformed data by cost minimization. Alternative,
use a snake for example using Greedy algorithm.

The object is to find an algorithm to link the points
identified on a gradient map to give continuous
enclosing contours. Think out extension to 3d

Output: Contour (with image)

Gradient
Initialization

Narrow Band

Visualisation /
Post-processing

Reinitialisation

Level Set

• Browse between images
• Initialize a sphere
• Initialize a region in a slice
• Replicate or clear region
• Starting process
• End program

Active Contours
[Kass, Witkin, Terzopoulos ’88]

E ()  EInt ()  EExt ()
1
2

2

EInt ()    ' ( s )   ' ' ( s ) ds
0

EExt ()   I

Problems:
• Initialization
• Topological changes
• 3D implementation

2

Level-Set methods
[Osher and Sethian ‘88]

Embed the contour to a higher dimension space level
set function: .
E ( )  L( )  A( )  E Ext ( )
E
E

1
Ext

2
Ext

 0

( )    N  I ( p ) dp
( )  1 

( I ( p )  1 )
2

2
1

2

dp   2 

( I ( p)   2 )
2

2
2

2

dp

Level set extension to 3D

The contour moves in a 3D space (3)

E ( )  S ( )  V ( )  E

1
Ext

( )

Energy minimization: Gradient Descent Method
local optimization 

E ( )
t

E ( )
t



S ( )
t



V ( )

      I

 I  I xx  I yy  I zz
2

t
2



E

1
Ext

t

( )

Visualisation
• Interface between algorithms: 3D matrix
volume
• 3D volume matrix
• Conversion to VRML → flexibility
Two approaches:
• triangular mesh
• marching cubes

Examples:

Conclusions
• Pros
– noise prone
– 3D segmentation is natural
– isolated components are permitted

• Cons
– LS is parameterised
– LS slower than 3D snakes
– processing resources (CPU, memory)

• Future work
– automatic parameter adjustment
– multi-scale processing
– combined intensity and edge based segmentation

References
[1] S. Osher and J. A. Sethian, “Fronts propagating with curvature
dependent speed: Algorithms based on Hamilton-Jacobi
formulations”, J. Comp. Phys., vol. 79, pp.12–49, 1988
[2] M. Kass, A. Witkin, and D. Terzopoulos. Snakes, “Active Contour
Models”, International Journal of Computer Vision 1(4), pp.321–331,
1988
[3] T. Chan and L. Vese, “An Active Contour Model without Edges” in
SCALE-SPACE ’99: Proceedings of the Second International
Conference on Scale-Space Theories in Computer Vision, pp. 141–
151, Springer-Verlag, 1999

[4] C. Xu and J. L. Prince, “Snakes, Shapes, Gradient Vector Flow”,
IEEE Transactions on Image Processing, Vol. 7, no. 3, pp. 359-369,
1998

Thank you for your attention

Questions?


Slide 12

3D Segmentation
Using
Level Set Methods

Zsolt Husz
Heriot-Watt University,
Mokhled Al-Tarawneh Edinburgh, Scotland
Ízzet Canarslan
University of Newcastle upon Tyne,
Istanbul Technical University,
England
Turkey

Péter Horváth
University of Szeged,
Hungary

Sebahattin Topal
Middle East Technical University,
Ankara, Turkey

3D Segmentation Using
Level Set Methods
Input: Medical and/or other images
Operation: Compute gradient image. Define a
transform, for example polar, a cost function, for
example circumference and gradient. Minimize path
in transformed data by cost minimization. Alternative,
use a snake for example using Greedy algorithm.

The object is to find an algorithm to link the points
identified on a gradient map to give continuous
enclosing contours. Think out extension to 3d

Output: Contour (with image)

Gradient
Initialization

Narrow Band

Visualisation /
Post-processing

Reinitialisation

Level Set

• Browse between images
• Initialize a sphere
• Initialize a region in a slice
• Replicate or clear region
• Starting process
• End program

Active Contours
[Kass, Witkin, Terzopoulos ’88]

E ()  EInt ()  EExt ()
1
2

2

EInt ()    ' ( s )   ' ' ( s ) ds
0

EExt ()   I

Problems:
• Initialization
• Topological changes
• 3D implementation

2

Level-Set methods
[Osher and Sethian ‘88]

Embed the contour to a higher dimension space level
set function: .
E ( )  L( )  A( )  E Ext ( )
E
E

1
Ext

2
Ext

 0

( )    N  I ( p ) dp
( )  1 

( I ( p )  1 )
2

2
1

2

dp   2 

( I ( p)   2 )
2

2
2

2

dp

Level set extension to 3D

The contour moves in a 3D space (3)

E ( )  S ( )  V ( )  E

1
Ext

( )

Energy minimization: Gradient Descent Method
local optimization 

E ( )
t

E ( )
t



S ( )
t



V ( )

      I

 I  I xx  I yy  I zz
2

t
2



E

1
Ext

t

( )

Visualisation
• Interface between algorithms: 3D matrix
volume
• 3D volume matrix
• Conversion to VRML → flexibility
Two approaches:
• triangular mesh
• marching cubes

Examples:

Conclusions
• Pros
– noise prone
– 3D segmentation is natural
– isolated components are permitted

• Cons
– LS is parameterised
– LS slower than 3D snakes
– processing resources (CPU, memory)

• Future work
– automatic parameter adjustment
– multi-scale processing
– combined intensity and edge based segmentation

References
[1] S. Osher and J. A. Sethian, “Fronts propagating with curvature
dependent speed: Algorithms based on Hamilton-Jacobi
formulations”, J. Comp. Phys., vol. 79, pp.12–49, 1988
[2] M. Kass, A. Witkin, and D. Terzopoulos. Snakes, “Active Contour
Models”, International Journal of Computer Vision 1(4), pp.321–331,
1988
[3] T. Chan and L. Vese, “An Active Contour Model without Edges” in
SCALE-SPACE ’99: Proceedings of the Second International
Conference on Scale-Space Theories in Computer Vision, pp. 141–
151, Springer-Verlag, 1999

[4] C. Xu and J. L. Prince, “Snakes, Shapes, Gradient Vector Flow”,
IEEE Transactions on Image Processing, Vol. 7, no. 3, pp. 359-369,
1998

Thank you for your attention

Questions?