Präsentiert: Entsalzung im geschlossenen Kreislauf (CCD) Innovative RO Technologie für grossen Durchfluß, hohe Rückgewinnung and Niedrig- Energie ohne Energie Rückführungseinheiten.

Download Report

Transcript Präsentiert: Entsalzung im geschlossenen Kreislauf (CCD) Innovative RO Technologie für grossen Durchfluß, hohe Rückgewinnung and Niedrig- Energie ohne Energie Rückführungseinheiten.

Slide 1

Präsentiert:

Entsalzung im geschlossenen Kreislauf (CCD)

Innovative RO Technologie für grossen Durchfluß, hohe
Rückgewinnung and Niedrig- Energie ohne Energie
Rückführungseinheiten


Slide 2



Entsalzung im geschlossenen Kreislauf / Closed Circuit Desalination (CCD) ist
eine weiterentwickelte hydrostatische kontinuierliche RO Technologie.



CCD ermöglicht einen Betrieb bei extremen Durchflußraten (über 30 l/m2/h, ohne
die Membranwirkungsgrenzen zu überschreiten), extreme Rückgewinnung (65%
für SWRO und ultimativ für BWRO) sehr niedrigen Energieverbrauch (SWRO
bei ~1.7 kWh/m3 und niedriger), ohne Energie - Rückführungseinheiten.



CCD benötigt nur Standard Komponenten , einschließlich Membranen jedweder
Type und Fabrikat.



CCD ist anwendbar für jede RO Anwendung beliebiger Größe.



CCD ist Feld erprobt – BWRO Anlagen seit 2009 (Anlagen bis 1500 m3/d), und
SWRO seit 2010.



CCD Technologie ist entwickelt von Prof. Avi Efraty, und beinhaltet mehrere
weltweit zugelassenen Patente.


Slide 3

Agenda





Technologie Übersicht
Prinzip CCD – Theorie und Praxis
 SWRO CCD
 BWRO CCD
SWRO Leistung
 Testeinheit Konfiguration
 Vergleichsanalyse
 SWRO Einheit Konfiguration – Scale Up


Slide 4

CCD Einheiten


Slide 5

Principal batch CCD


Slide 6

Technologie – konventioneller RO


Schematische Zeichnung von existierenden Seewasserentsalzunsanlagen.
Permeate

43.6%
Zufluß

100%

10% 8.1% 6.7% 5.4% 4.4% 3.6% 3.0% 2.4%
Rückgewinnung pro Element

56.4%
Dekomprimierte Lauge

Komprimierte
Lauge
Energie
Rückgewinnung

Nachteile konventioneller Technologie :
 Konstant hoher Druck für fortlaufende Membran Auslastung.
 Beschränkte Rückgewinnung
 Energie Rückführungseinheiten (ERD) müssen vorgesehen werden um
doppelten Energieverbrauch auszuschließen. ERDs sind tuer in Bezug
auf CAPEX, Wartung, und ERD verursacht Energie Verlust.
 Die Beaufschlagung der letzten Membranen ist schlecht, und deshalb ,
ist der Gesamtwirkungsgrad gering.
 Auslegung verschiedener Elemente für Verschutzungsgrad und Größe
für Einlauf / Auslauf Membranen.


Slide 7

Theoretischer hydrostatischer Batch Ansatz
Zufluß

HP
Pumpe

Speise
wasser
Permeate
wasser
Membran
wände

1m3

2m3



Das System ist mit frischem Speisewasser gefüllt
und bei Athmosphärendruck verschlossen.
Entsalzung initiert durch Rührer und Pumpe.



Konstanter Durchfluß bei variablem Druck.

1m3



Entsalzung stopt bei vorgebenem
Rückgewinnungsgrad. (überwacht durch EC/ Druck
/ Volumen ) durch Ausschalten von HP & Rührer.



Permeate Tank


Slide 8

Hydrostatisch theoretischer Ansatz



Behälter dekomprimiert auf
Atmosphärendruck (AP)



Vernachlässigbarer Verlust
an hydraulischer Energie
(0.0025 kWh)



1m3

Lauge bei AP wird ohne
zusätzlichen
Energieaufwand
abgelassen.

Brine Sammel -Tank

2m3

Permeate Sammel - Tank


Slide 9

Hydrostatisch theoretischer Ansatz



Behälter dekomprimiert auf
Atmosphärendruck (AP)



Vernachlässigbarer Verlust an
hydraulischer Energie (0.0025
kWh)



Lauge bei AP wird ohne
zusätzlichen Energieaufwand
abgelassen.

2m3
1m3
Brine Sammel -Tank

Permeate Sammel -Tank


Slide 10





Hydrostatisch theoretischer Ansatz

Behälter gefüllt mit
frischem Speisewasser
bei Atmosphärendruck.
System fertig für
nächsten Zyklus.

1m3

2m3
1m3
Brine Sammel - Tank

Permeate Sammel -Tank


Slide 11

Energiebedarf

Pressure (bar)

Pressure & Energy consumption
80
70
60
50
40
30
20
10
0
0

10

20

30

40

Recovery %

Konventionelle Entsalzung bei vorgegebenen Druck (konstant – 69 bar)

Variabler Druck – 10 bar Anfahrdruck (Durchschnitt – 41 bar)
Osmotischer Druck – theoretisch niedriger Limit (31 bar).


Slide 12

Hydrostatic vs. hydrodynamic approach
Permeate

43.6%
10% 8.1% 6.7% 5.4% 4.4% 3.6% 3.0% 2.4%
Recovery per element

56.4%

Compressed
Brine

Energy
Recovery

Decompressed Brine
Advantages of the hydrostatic approach:
 Pressurized feed volume equal to permeate
volume. Hence:
 Practically zero loss of energy to brine.
 No need for Energy Recovery Devices
– Reduction in CAPEX and OPEX.
 Variable pressure greatly reduce energy
1m3
loss to permeate side.
Hence, this system requires far less energy even compared to theoretical
ERDs with 100% efficiency.
 The process is not limited in its recovery.


Slide 13

Hydrostatic desalination utilizing standard membranes
Feed
Permeate

1m3
Permeate

Feed

10% 8.1% 6.7%
Conductivity
meter





Circulation
pump

Instead of s simple tank, our closed hydrostatic tank contains
standard membranes for which it simulates the specific flow
conditions that are recommended for those membranes.
Instead of a mixer, circulation pump is circulating the concentrate.


Slide 14

Hydrostatic desalination utilizing standard membranes
Permeate

Feed

10% 8.1% 6.7%
Conductivity
meter

Circulation
pump

QHP=QPER

QMOD-outlet=QCP QMOD-inlet=QHP+QCP
Module Recovery (MR)=QHP/(QHP+QCP)*100
Net Driving Pressure = Constant Maintained by HP
Cross Flow = Constant (& High)  Maintained by CP
Recovery not limited  Function of time and internal circulations
Independent manipulation of each of those variable guarentees
unmatched operational flexibility.


Slide 15

Membranes performance
10% 8.1% 6.7% 5.4% 4.4% 3.6% 3.0% 2.4% 1.9%

No excessive flux
induced fouling

Boosting
pressure

10% 8.1% 6.7%

Boosting
pressure

10% 8.1% 6.7%

No insufficient flux
induced fouling

10% 8.1% 6.7%

25%
75%

Lower salinity
Optimal flow rate
Optimal pressure

High salinity
Low flow rate
Lower pressure


Slide 16

Membranes performance

The above design greatly improves membranes performance:
 Much higher average membrane productivity (better utilization of membrane
surfaces) for reduced number of membranes or reduced pressure.
 Reduced energy thanks to gradual inter-stage buildup of pressure.
 Reduction of fouling – head membranes are not exposed to excessive flow
and pressure; tail membranes are not subject to insufficient flux rates.
However, this design is limited in its recovery and requires Energy Recovery
Devices just like the conventional designs, and it also requires more CAPEX.


Slide 17

CCD & Membranes performance

Permeate

Feed
Dilution Effect

Conductivity
meter

Circulation
pump

CCD

CCD (in the bottom) is utilizing membranes as effectively as the upper design.

In the first cycle CCD membranes operates like the first 3 membranes of the
upper design, in the second cycle like the second 3 membranes and so on.
However, during all the cycles constant driving pressure is maintained so there
are not variations in membranes tension.


Slide 18

CCD & Membranes performance
Permeate

Feed
Dilution Effect

Conductivity
meter

Circulation
pump

The CCD has great advantages in terms of membranes performance:
 Much higher and extremely balanced flux rates without exceeding head
elements’ test conditions and without insufficient tail elements’ flux rates.
 Reduction of scaling – after the last cycle in each sequence the membranes
are washed by fresh feed (instead of facing constant peak concentration like
in the conventional systems).
 Bio-fouling reduction through the frequent concentration variation and the
high flow rates.
 Extreme operational flexibility thank to the ability to individually manipulate
any of the process and membranes variables irrespective of the others.
In addition, there are the other CCD advantages such as ultimate recovery,
no need for Energy Recovery and variable pressure that are reducing energy.


Slide 19

Hydrostatic approach
Permeate

HP(vfd)
Feed

CP(vfd)

The hydrostatic desalination approach has extraordinary advantages over the
conventional technology that are manifested in dramatic reductions in energy,
CAPEX (fewer membranes, no energy recovery devices), and OPEX (thanks to
the reduced membranes erosion).
However, it has a major problem: this approach makes a batch process
and thus, it not suitable for commercial applications.
Desalitech technology makes it continuous.


Slide 20

SWRO CCD

US 7,695,614 & related patents granted worldwide


Slide 21

SWRO CCD
Closed Circuit Desalination (CCD) while in the disengaged side conduit fresh
feed is filled at near Atmospheric Pressure (AP).
Closed Circuit
Permeate

HP(vfd)

CP(vfd)

Feed

Pressurized

AP

BRP

Side Conduit

HP = High Pressure Pump, CP = Circulation Pump, BRP = Brine replacement Pump, O = 2 way valve,

= Non return valve


Slide 22

SWRO CCD
Closed Circuit Desalination (CCD) while the sealed disengaged side conduit
contains fresh feed under Atmospheric Pressure (AP).
Closed Circuit
Permeate

HP(vfd)

CP(vfd)

Feed

Pressurized

AP

BRP

Side Conduit

HP = High Pressure Pump, CP = Circulation Pump, BRP = Brine replacement Pump, O = 2 way valve,

= Non return valve


Slide 23

SWRO CCD
Closed Circuit Desalination (CCD) continues while disengaged side conduit
which contains fresh feed is hydrostatically compressed and stands by.
Closed Circuit
Permeate

HP(vfd)

CP(vfd)

Feed

Pressurized

Pressurized

BRP

Side Conduit

Pressurizing is done hydrostatically and mildly, without flow and cavitations
and without timing considerations.

HP = High Pressure Pump, CP = Circulation Pump, BRP = Brine replacement Pump, O = 2 way valve,

= Non return valve


Slide 24

SWRO CCD
Closed Circuit Desalination (CCD) continues, with the side conduit engaged to the
closed circuit for a single cycle, for the release of fresh feed & collection of brine.
Closed Circuit
Permeate

HP(vfd)

CP(vfd)

Feed

BRP

Side Conduit



Side conduit engaged at high recovery set point, monitored by pressure,
conductivity or volumetrically.
Valves operate at isobaric conditions, mildly, without delicate timing
considerations.

HP = High Pressure Pump, CP = Circulation Pump, BRP = Brine replacement Pump, O = 2 way valve,

= Non return valve


Slide 25

SWRO CCD
Replacement complete. Closed Circuit Desalination (CCD) continues with fresh
feed that have replaced the highly concentrated closed circuit volume. The side
conduit is disengaged and sealed, containing the systems brine.
Closed Circuit
Permeate

HP(vfd)

CP(vfd)

Feed

Pressurized

Pressurized

BRP

Side Conduit



Side conduit disengaged after a single cycle is monitored by conductivity
or volumetrically.
Valves operate at isobaric conditions, mildly, without delicate timing
considerations.

HP = High Pressure Pump, CP = Circulation Pump, BRP = Brine replacement Pump, O = 2 way valve,

= Non return valve


Slide 26

SWRO CCD
Closed Circuit Desalination (CCD) continues to the next sequence while
disengaged side conduit is decompressed to atmospheric pressure (at a
negligible loss of hydraulic energy).
Closed Circuit
Permeate

HP(vfd)

CP(vfd)

Feed

Pressurized

AP

BRP

Side Conduit

HP = High Pressure Pump, CP = Circulation Pump, BRP = Brine replacement Pump, O = 2 way valve,

= Non return valve


Slide 27

SWRO CCD
Closed Circuit Desalination (CCD) continues with the next sequence, while in
the disengaged side conduit fresh feed is replacing the brine at near
Atmospheric Pressure (AP).
Closed Circuit
Permeate

HP(vfd)

CP(vfd)

Feed

Pressurized

AP

Brine
at AP

BRP

Side Conduit

HP = High Pressure Pump, CP = Circulation Pump, BRP = Brine replacement Pump, O = 2 way valve,

= Non return valve


Slide 28

SWRO CCD implemented for high salinity brackish source
In operation since early 2009.

Rear View

Front View

HP

SC

PV

CP

SC

CP

HP

PV


Slide 29

SWRO CCD Advantages






Energy consumption reduction of 30%-45% (depending on flux)
 Practically zero loss to brine side.
 Reduced loss to permeate side thanks to variable pressure.
Reduction in CAPX
 No need for Energy Recovery Devices (ERD).
 Not subject to ERDs diseconomy of scale  superb scalability (addressed later).
 Fewer membranes (reducing up to 60% of the membranes. 1-4 per housing).
 Ultimate recovery – reducing pre treatment and brine rejection CAPEX.
Reduction in OPEX
 Reduction in membranes erosion through reduction in mechanical fouling (of
head and tail membranes), bio-fouling and scaling.
 Ultimate recovery – reduced pre treatment OPEX.
 Improved permeate quality (at any given recovery, result from higher flux rates).
 Relaxed operation at isobaric conditions – avoiding mechanical loads & timings.
 Unmatched operational flexibility – A given system can maintain high recovery at
maximum production rate for several hours a day and then switch to maximum
energy saving mode. Better coping with source conditions variations.


Slide 30

BWRO CCD

US 7,628,921 & related patents granted worldwide


Slide 31

Conventional BWRO



BWRO – Brackish Water RO (refers also to surface and ground water).
Source recovery is a MAJOR issue.
50%
Booster
pump

100%

25%
Booster
pump

Flow / 2
Salinity x 2
Pressure <

12.5%

12.5%

87.5%

Drawbacks
 A LOT of membrane elements with very poor average utilization.
 Stages and as required, boosters and turbochargers.
 Limited source recovery.
31


Slide 32

Continuous hydrostatic process
Permeate

HP(vfd)
Feed

CP(vfd)

Closed Circuit Desalination
Flow Conditions: Q permeate = Q feed, 100% Recovery, ~90% of the Time


Slide 33

Continuous hydrostatic process
Permeate

HP(vfd)
Feed

CP(vfd)

“Plug Flow” Desalination & Brine Rejection
Flow Conditions: Q feed = Q permeate + Q brine
~40% Recovery, ~10% of the Time
Brine rejected at minimum sequence pressure


Slide 34

Continuous hydrostatic process
Permeate

HP(vfd)
Feed

CP(vfd)

Returning to Closed Circuit Desalination
Flow Conditions: Q permeate = Q feed, 100% Recovery, ~90% of the Time


Slide 35

BWRO CCD


Energy for high recovery applications is typically 6% higher
compared to SWRO CCD, but this is typically still 30% below the
conventional systems, while this technology greatly increase the
CAPEX reduction.



High recovery is extremely important in BWRO and industrial water
treatment applications, and BWRO achieves any attainable
recovery, at lower energy, reduced scaling and fouling and reduced
CAPEX and OPEX.



Any uniform CCD system can cope with any source salinity,
recovery and application – there is no need to design specifically for
the specific circumstances, and the performance is far better than
that of a fully optimized conventional system for the specific source.



Operational flexibility enables coping with variations in source
conditions which characterize brackish and industrial water sources.


Slide 36

COMMERERCIAL 10xME4 BWRO-CCD UNIT for 45+5 m3/h capable
of 87% Recovery with a Difficult Feed Source of 8,500 μS/cm

C


Slide 37

SWRO CCD field
results

CCD Application to Mediterranean Water (4.2%)
using a unit configuration 4xMEn (n=2-4)


Slide 38

Schematic Design of the SWRO-CCD 4MEn (n=2-4) Unit

Permeate
ME

Brine
HP

BRP

HPB

PV

CP
Lubrication Leakage

Feed

HP(vfd), Danfoss 10 m3/h 82 bar: CP(vfd), FEDCO 45 m3/h 1.0+0.5 bar
HPB, HP Booster (~1.8 bar): BRP, Brine Replacement Pump (60 m3/h, 1.8 bar)
ME, Membrane Elements (SWC6): PV, Pressure Vessels


Slide 39

Front View of the SWRO-CCD 4MEn (n=2-4) Unit

PV

SC
CP

HP


Slide 40

Rear View of the SWRO-CCD 4MEn (n=2-4) Unit

SC

PV

CP


Slide 41

CCD 4MEn vs. the most efficient SWRO Mega Plant in Israel
RO Energy (HP+HPB+CP) & BRP 4xMEn (n=2-4) MED-4.2% TRIAL
Actual CCD results with current low pumping efficiency
3.2
3.0
2.8
2.6

28%
00%
23%

PELTON:
PX:

Saved Energy
Saved Membranes
Saved Energy

24%
35%
19%

2.4
2.2

kWh/m3

2.0
1.8
1.6
1.4

ME4 - RO
ME4 - BRP
ME3 - RO
ME3 - BRP
ME2 - RO
ME2 - BRP

1.2
1.0
0.8
0.6
0.4
0.2
0.0
6

8

10

12

14

16

18

20

FLUX - lmh

22

24

26

28

30

32

34


Slide 42

CCD 4MEn vs. the most efficient SWRO Mega Plant

Extrapolated RO Energy (HP+HPB+CP) & BRP 4xMEn (n=2-4) MED-4.2% for pumps efficiency of
88%HP 60%CP (which is attainable in our next units, and which is much closer to that of the Mega plant).
3.2
3.0
2.8
2.6

38%
00%
33%

PELTON:
PX:

Saved Energy
Saved Membranes
Saved Energy

34%
35%
30%

2.4
2.2

kWh/m3

2.0
1.8
1.6
1.4

ME4 - RO
ME4 - BRP
ME3 - RO
ME3 - BRP
ME2 - RO
ME2 - BRP

1.2
1.0
0.8
0.6
0.4
0.2
0.0
6

8

10

12

14

16

18

20

FLUX - lmh

22

24

26

28

30

32

34


Slide 43

Extrapolated RO Energy (HP+HPB+CP) & BRP 4xMEn (n=2-4) Ocean-3.5%
at efficiencies of 88%HP 60%CP
3.2
3.0
2.8
2.6
2.4

Average Flux

2.2

kWh/m3

2.0
1.8
1.6
1.4

ME4 - RO
ME4 - BRP
ME3 - RO
ME3 - BRP
ME2 - RO
ME2 - BRP

1.2
1.0
0.8
0.6
0.4
0.2
0.0
6

8

10

12

14

16

18

20

FLUX - lmh

22

24

26

28

30

32

34


Slide 44

8.6 m

4m

2{60ME4}+8M(32”-700cm)

7m

10,080 m3/day (21.5 lmh)
7,502 m3/day (16.0 lmh)
HP 312-420 m3/h
CP 625+50 m3/h
26.5 m3 CC Volume
Dimensions: 9(l)-4(w)-7(h)

CP located in the inner space
between the 60xME4 sub-units

CP

Brine outlet

Pressurized Feed

Feed inlet


Slide 45

8.6 m

4m

2{60ME4}+8M(32”-700cm)
M

7m

CP

26.5 m3 (3.3 m3 per container)
Dimensions: 7.0(l)-1.0(w)-7.0(h)


Slide 46

CCD Scalability







Isobaric Energy Recovery Devices
(most advanced ERD systems) suffer
from diseconomy of scale, so
dramatic enlargements are not
expected there.
In opposite, the side conduit of the
CCD may be enlarged to any desired
volume (as seen on the right, and
way beyond), and still, it will not
require more than 3 valves and a
single non return valves.
In addition, a single side conduit may
serve more than one closed circuit.
The result – dramatic CAPEX
reduction for MEGA plants.

2{60ME4}+8M(32”-700cm)
M

26.5 m3 (3.3 m3 per container)
Dimensions: 7.0(l)-1.0(w)-7.0(h)


Slide 47

20,160 m3/day (840 m3/h) Conduit Shared 2{120xME4}+8M(32”-700 cm) System
SHOWING: Side conduit recharged (~1.0 min.) while A&B operated & disengaged
Shared Side Conduit Configuration

120xME4 SWRO-CCD
Unit-A: 10,080 m3/day

8M (D32”– 700cm)
Brine
120xME4 SWRO-CCD
Unit-B: 10,080 m3/day
Pretreated Feed

Permeate


Slide 48

20,160 m3/day (840 m3/h) Conduit Shared 2{120xME4}+8M(32”-700 cm) System
SHOWING: Charged Side Conduit on stand-by for Engagement with A
Shared Side Conduit Configuration

120xME4 SWRO-CCD
Unit-A: 10,080 m3/day

8M (D32”– 700cm)
Brine
120xME4 SWRO-CCD
Unit-B: 10,080 m3/day
Pretreated Feed

Permeate


Slide 49

Thanks