The application of hydrological models in shallow landslides prediction 指導老師:李錫堤 教授 報告者: 李浩瑋 報告日期:2010/11/4 Outline Introduction Review Objective Method Data Preliminary results Introduction Taiwan has been vulnerable to shallow landslide disasters caused by heavy rainfalls. Mitigate.

Download Report

Transcript The application of hydrological models in shallow landslides prediction 指導老師:李錫堤 教授 報告者: 李浩瑋 報告日期:2010/11/4 Outline Introduction Review Objective Method Data Preliminary results Introduction Taiwan has been vulnerable to shallow landslide disasters caused by heavy rainfalls. Mitigate.

Slide 1

The application of hydrological models in
shallow landslides prediction

指導老師:李錫堤 教授
報告者: 李浩瑋
報告日期:2010/11/4
1


Slide 2

Outline
Introduction

Review
Objective

Method
Data

Preliminary

results


Slide 3

Introduction
Taiwan has been vulnerable to shallow landslide disasters
caused by heavy rainfalls.

Mitigate landslide disasters :
Evaluate the potential of slope failure events in space and time

Lee at al., 2008

Landslide susceptibility analysis in the Tachia Creek drainage basin


Slide 4

Introduction
Statistical approaches:
(Fuzzy Logic, Logistic Regression, and Neural Networks…)

Deterministic approaches:
Physically-based models
(Iverson, 2000)

Steady state model
SHALSTAB MODEL(Montgomery et al., 1994)
SIMMAP (Pack et al., 1998)

Transient model
TRIGRS (Baum et al., 2002)

Basic:
Modelling of slope the hydrological response
Topography is considered


Slide 5

Objective
To establish a slope-instability analysis and a hydrological
model for landslide prediction during heavy rainstorms.

FS?

θ
Soil


Slide 6

Application of hydrology model
Review
Method

Data
Result

SHALSTAB
(Dietrich and Montgomery, 1994)
- Steady- state hydrological conditions
- Fully saturated conditions
- Homogeneous soil
- Slop-parallel groundwater flow
- Impermeable basal boundary
Hydrological model

Critical Rainfall

Infinite slope

qcr


Slide 7

Application of hydrology model
TRIGRS
(Baum et al., 2002)

Review
Method

Data
Result

- Transient hydrological conditions
- Fully saturated conditions
- Homogeneous soil
- Slope-parallel watertable
- Impermeable or infinite basal boundary
Infiltrate model

solution of Richard’s equation
Infinite slope model

 (Z , t )

FS ( Z , t )


Slide 8

Application of hydrology model
Review
Method

Data
Result

(Casadei., 2003)
- Transient hydrological conditions
- Unsaturated conditions
- Slope-parallel watertable
- Homogeneous soil
- Impermeable boundary
Coupled hydrological–slope stability model
Groundwater table above the slip surface

hw (t )
Infinite slope model

FS (t )


Slide 9

Flow chart
Input data
Rainfall
Data

DEM Data

Area
Data

Soil
Parameter

Groundwater level
Estimation model

Hydrologic
Parameter

Infinite Slope
Stability Model

Output data
Groundwater
Height

Safety
Factor
Landslide
susceptibility Map


Slide 10

Hydrologic Model
Review
Method

TOPMODEL(TOPgraphy based hydrological MODEL)(Beven.
et al., 1979)
Stream line

Data
Result

Contour line
Specific Catchment Area a = A/b

Unit contour
length b
Contributing area A


Slide 11

Topographic index
Review
Method

Data
Result

 a 

T  ln 
 tan  

a: Specific area
tan β :slope


Slide 12

TOPMODEL Structure
Review

q

total

q

overland

q

subsurface

Method

Data

Srz

Result

Suz

Groundwater table

qv
Zw
Srz : Root zone
Suz : Unsaturated zone
D:Soil Depth
Zw:Water table height
qv :垂直入滲率


Slide 13

TOPMODEL Assumption
q

total

q

overland

q

subsurface

Saturated defict, zj

Q j  T0e

(

zj
m

This equation can be solved for z:
)

c tan 

Steady-state

Q j  RA
a
z  z  m[  ln(
)]
tan
j

j

z j  m ln(

R
a
) j  m ln(
)
T0
tan 

z   m ln(

r
) j ]  m
T0



1
a
ln(
)j

A j
tan 


Slide 14

Hydrologic Routing
Review
Method

Data
Result

a
z j  z  m[  ln(
)j]
tan
The recharge to the groundwater table
q v, j  SUZ j /(t d Z j ) , Q v   qv , j  A j
j

The baseflow from the saturated zone

z
Q  Q exp( )
m
b

0

z(t  1)  z(t) 

Q b (t )  Qv (t )
 t
A


Slide 15

Hydrologic Routing
Review
Method

Data
Result

a
z j (t  1)  z (t  1)  m[  ln(
)j]
tan

The recharge to the groundwater table
q v, j  SUZ j /(t d Z j ) , Q v   qv , j  A j
j

The baseflow from the saturated zone

z
Q  Q exp( )
m
b

0

z(t  1)  z(t) 

Q b (t )  Qv (t )
 t
A


Slide 16

Infinite Slope MODEL
Review

依據有效應力概念,土體之阻滯力 τr 表示如下

Data

  C  (  u ) tan 
 C  ( Z cos    Z cos  ) tan 

Result

土體之駟動力τd為飽和土體沿坡面之分力

Method

r

2

2

s

s

w

   Z sin  cos )
d

s

resistance force
FS 
driving force
C  ( Z   Z ) cos  tan 

 Z sin  cos 
2

s

w

s

w

FS>1 Stable
FS<1 Unstable


Slide 17

Infinite Slope MODEL
Review

resistance force C  ( Z   Z ) cos  tan 
FS 

driving force
 Z sin  cos 
2

Method

s

w

w

s

Saturation ,W

Data
Result

FS 

C
 Z tan 
 [1  ( )]
 Z sin  cos 
 Z tan
w

s

w

s

TOPMODEL calculate local
storage deficit Zi

C
 Z  Z tan 
FS 
 [1  (
)]
 Z sin  cos 

Z
tan
w

s

i

s

Distribution of the soil saturation induced slope instability


Slide 18

Study Area
Review
Method

Data
Result


Slide 19

Study Area
Review
Method

Data
Result


Slide 20

Geological Map
Review
Method

Data
Result


Slide 21

Geo-material Parameter
Review

參數值
Method

Data
Result

土壤單位重,γS (KN/m3)

說明

zone1

18.2

實驗

zone2

19.6

實驗

zone3

參數

(zone1+zone)/2

坡度,θ (。)

ArcView軟體計算

由DTM推估

土壤深度,Z (m)

經驗式

由坡度推求

有效凝聚力,C (KPa)

搭配NDVI推估

抗剪摩擦角,ψ (。)

有效範圍推估


Slide 22

TOPMODEL Parameter
Review

參數

參數值

說明

Method

坡度,θ (。)

ArcView軟體計算

由DTM推估

Data

比集水面積,a/b (m)

ArcView軟體計算

由DTM推估

Result

土壤導水率隨時間衰減,m

0.032

退水歷線推估

0.0000328

流量觀測

土壤飽和時導水率,T0(m2/h)

5

林地飽和滲透
係數推估

未飽和層下滲延遲時間,
TD(h)

50

假定值

根系層最大容許儲蓄水量,
Srmax(m)

0.05

林地最大蓄水


初始根系層含水量,Sr0(m)

0.002

假定值

初紿流量,q0(m/h)


Slide 23

Landslides induced by AERE Typhoon
Review
Method

Data
Result


Slide 24

Topographic index
Review
Method

Data
Result


Slide 25

Local saturation deficits
Review
Method

Data
Result

Given
• m=0.032
• .Z  0.317

T=0

Compute
• =5.43


a
Z  Z  m   ln(
tan 

i

i


) 



Slide 26

Soil profile saturation
Review
Method

Data
Result

Z w  D  Zi

w

Saturation > 1.0, Set to 1.0
Saturation < 0 , Set to 0
Zi

Zw
Z


Slide 27

Soil profile saturation
Review
Method

Data
Result


Slide 28

Rainfall Process
Review
Method

Data
Result

T=36


Slide 29

Prediction
Review

T=36

Method

Data
Result

Distribution map of slope failures of actual vs predicted by model


Slide 30

Classification Error Matrix
Review
Method
X

Data
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Result

非山崩網格

山崩網格

X

X

預測的山崩網格,坐落
於非山崩網格中
預測的山崩網格,坐落
於山崩網格中


Slide 31

Classification Error Matrix
Review
Method

Data
Result

The results of both are quantitatively compared by using two
following evaluation indexes.
AR= ( N1 ) / ( N1+ N2+ N3+ N4 )
FAR= ( N3 ) / ( N1+ N2+ N3+ N4 )

(1)
(2)

Here, AR is accuracy rate (%), FAR is false alarm rate (%) and N1,
N2, N3 and N4 (see Table )
Predict

Actual

Unstable
(FS < 1)

Stable
(FS ≧1)

Unstable

N1

N2

stable

N3

N4

N1, N2, N3, N4 : number of cell on each category


Slide 32

Classification Error Matrix
Review
Method

The results of both are quantitatively compared by using two
following evaluation indexes.

Data

Predict
Unstable
(FS < 1)

Stable
(FS ≧1)

Unstable

613

451

stable

13402

107343

Result

Actual

N1, N2, N3, N4 : number of cell on each category
AR= 57.61%


Slide 33

崩塌地分析成果及評估
文獻回顧
研究方法

正確率的計算方式可以分類誤差矩陣表(classification
error matrix)進行表示,其計算方式如下:
Total=121809
預測結果

研究資料
1

山崩(14015)
(FS < 1)

非山崩
(FS ≧1)

山崩(1064)

613

451

非山崩
(120745)

13402

107343

初步成果
未來工作

原始資料

山崩正確率=57.61%
非山崩正確率=88.91%
總體正確率=88.62%


Slide 34

Future Work
Calibration parameter
Model validation
Comparing the results

34


Slide 35

Thank you for your attention