Attosecond Flashes of Light – Illuminating electronic quantum dynamics – XXIIIrd Heidelberg Graduate Days Lecture Series Thomas Pfeifer InterAtto Research Group MPI – Kernphysik, Heidelberg.

Download Report

Transcript Attosecond Flashes of Light – Illuminating electronic quantum dynamics – XXIIIrd Heidelberg Graduate Days Lecture Series Thomas Pfeifer InterAtto Research Group MPI – Kernphysik, Heidelberg.

Slide 1

Attosecond Flashes of Light
– Illuminating electronic quantum dynamics –
XXIIIrd Heidelberg Graduate Days
Lecture Series

Thomas Pfeifer
InterAtto Research Group
MPI – Kernphysik, Heidelberg


Slide 2

Contents Yesterday
Attosecond Pulses
Classical and quantum mechanics of electrons

- Classical Motion of Electrons
definition of important quantities

- Quantum Mechanics
· Electron dynamics in (intense) laser fields
· Ionization
- High-harmonic generation: quantum mechanical view


Slide 3

Contents
Basics of short pulses and general concepts
Attosecond pulse generation
Mechanics of Electrons
single electrons
in strong laser fields

Attosecond Experiments with isolated Atoms
Multi-Particle Systems
Molecules
multi-electron dynamics (correlation)

Attosecond experiments with molecules / multiple electrons
Ultrafast Quantum Control
of electrons, atoms, molecules
Novel Directions/Applications
Technology


Slide 4

High Harmonics Quantum Mechanical
M. Lewenstein et al. Phys. Rev. Lett. 49, 2117 (1994)

1
S ( p , t , t ) 




t



t



 ~

p  eA( t )
2m



2

~
dt


Slide 5

high-harmonic generation
intense laser field acting on single atom
probability distribution p(x,y)=|Y(x,y)|2 for the electronic wavefunction

laser polarization


Slide 6

Wavepacket spreading


Slide 7

Split-Step Operator Technique


Slide 8

Streak field spectroscopy
quantum mechanically, with interference

Goulielmakis et al. (Krausz group), Science 305, 1267 (2004)


Slide 9

Streak-field spectroscopy

Drescher et al., Nature 419, 803 (2002)


Slide 10

Auger decay in Kr

Drescher et al. (Krausz group), Nature 419, 803 (2002)


Slide 11

Tunneling Spectroscopy

Uiberacker et al. (Krausz group), Nature 446, 627 (2007)


Slide 12

Tunneling Spectroscopy

Uiberacker et al. (Krausz group), Nature 446, 627 (2007)


Slide 13

Strong-Field Physics Experiments

Blaga et al. (Paulus, Agostini, DiMauro), Nat. Physics 5, 335 (2009)


Slide 14

Strong-Field Physics Experiments

Quan et al. Phys. Rev. Lett. 103, 093001 (2009)


Slide 15

Contents
Basics of short pulses and general concepts
Attosecond pulse generation
Mechanics of Electrons
single electrons
in strong laser fields

Attosecond Experiments with isolated Atoms
Multi-Particle Systems
Molecules
multi-electron dynamics (correlation)

Attosecond experiments with molecules / multiple electrons
Ultrafast Quantum Control
of electrons, atoms, molecules
Novel Directions/Applications
Technology


Slide 16

Contents
Multi-Particle Systems (Molecules, many electrons)
Attosecond experiments with molecules / multiple electrons
- Molecules and molecular orbitals
- Multi-electron Correlation: basics
- Born-Oppenheimer and beyond

- Recollision physics
- Experiments with Molecules


Slide 17

Chemical Bonds

http://en.wikipedia.org/wiki/Nitrogen

http://ibchem.com/IB/ibfiles/bonding/bon_img/cov2.gif,

http://www.unige.ch/sciences/Actualites/2007/MaximumMultiplicity/
W2_Mutiplicity.png


Slide 18

Linear Combination of Atomic Orbitals (LCAO)

http://www.uweb.ucsb.edu/~jodea/chem1c.htm, http://tannerm.com/images/diatomic7.gif


Slide 19

Molecular electronic structure

http://en.wikipedia.org/wiki/File:Benzene_Representations.svg


Slide 20

Complex Molecules

http://images.absoluteastronomy.com/images/encyclopediaimages/h/he/he
xokinase_ball_and_stick_model,_with_substrates_to_scale_copy.png

http://dwb4.unl.edu/Chem/CHEM869K/CHEM869KLinks/www.ccp14.ac.uk
/ccp/web-mirrors/llnlrupp/Xray/tutorial/pdb/helix_bonds.gif


Slide 21

Ultrashort x-ray/XUV Pulses
F E
ree

lectron

L

asers

and

H H
igh

armonic

wavelength
~1.5 Å

>1 nm

pulse energy
~1 mJ

<1 J

pulse duration
~100 as
~200 m ~20 fs
1 fs (proj.) fully
coherent

~1 mm

G

eneration


Slide 22

Complex Molecules
every molecule is different!
single shot!

F E
ree

L

lectron

asers

wavelength
~1.5 Å
-2 fs

2 fs

5 fs

10 fs

pulse energy
20 fs

~1 mJ
50 fs

pulse duration
~20 fs
1 fs (proj.)
Neutze et al., Nature 406, 752 (2000)


Slide 23

DNA

http://www.chemicalgraphics.com/paul/images/DNA/BallAndStick.jpg


Slide 24

macromopecular dynamics

e.g. detach functional group
(signaling protein)
from enzyme receptor

Pictures from: http://www.nfcr.org/Portals/0/Images/3d_blue_green_molecule.jpg, http://hasylab.desy.de/e77/e106/e122/e35842/e35862/Fig1_Hasylab-ultrafast_eng.jpg


Slide 25

Some theory of the chemical bond
Valence bond theory

localized electrons
between two atoms

Molecular orbital theory

delocalized electrons
within entire molecule

http://www.york.ac.uk/che
mistry/staff/academic/hn/pkaradakov/

www.jonathanpmiller.com/

become equivalent if extended
Born-Oppenheimer always inherently assumed


Slide 26

Complexity of Wavefunctions
Y ( r1 , r2 ,..., rN , s1 , s 2 ,..., s N )
Hydrogen atom (1 electron, 1 nucleus) can be found analytically
everything else: numerics necessary
for example: store wavefunctions on a grid
10 points (double precision, 8 B(Bytes)) in each dimension
Ground states (and ignoring nuclear core wavefunctions and most nuclear spin states):
Hydrogen atom: 16 kB
Helium atom:
32 MB
Hydrogen molecule:
64 GB

Oxygen atom:
21018 GB
Methane (16 daltons, [Da]): 6.51034 GB
Biomolecule: (kDa-MDa):
~101,000- 101,000,000 GB
(103(N-1) 2(N-1))8 B
- a few ZB (ZettaBytes), 1012 GB is the estimated total data stored digitally
estimate by IDC (International Data Corporation)
- 50 PB (PetaBytes), 106 GB is estimated information written by mankind in known history


Slide 27

Some theory of the chemical bond
Quantum chemistry methods
Density Functional Theory (DFT)
Hartree-Fock Theory (HF)
(single Slater determinant)

problems with ground states energetically
close to excited states or
in bond-breaking situations
improvements:

http://upload.wikimedia.org/wikipedia/en/7/7e/Electron_correlation.png

- Configuration interaction (CI)
- Multi-configurational self-consistent field (MCSCF)
combination between configuration interaction
(where the molecular orbitals are not varied but the expansion of the wave function)
and Hartree-Fock (where there is only one determinant but the molecular orbitals are varied).

- Semi-empirical quantum chemistry methods
for large molecules where other methods fail


Slide 28

Hybridization

sp2

http://www.grandinetti.org/Teaching/Chem121/Lectures/Hybridization/


Slide 29

Hybridization
sp

http://www.grandinetti.org/Teaching/Chem121/Lectures/Hybridization/


Slide 30

Hybridization
sp3

http://www.grandinetti.org/Teaching/Chem121/Lectures/Hybridization/


Slide 31

Scientific Goal of AttoPhysics
Correlated e- lectron dynamics
e-

e-

interaction (Coulomb)

(Entanglement)
Correlation
Y( e- 1, e- 2) ≠ Ψ( e- 1) ×Ψ ( e- 2)

symmetry (Fermions)

non-interacting

interacting

location e- 2

1

0

location

e- 1


Slide 32

Scientific Goal of AttoPhysics
Correlated e- lectron dynamics
e-

e-

interaction (Coulomb)
Correlation
Y( e- 1, e- 2) ≠ Ψ( e- 1) ×Ψ ( e- 2)

symmetry (Fermions)

location e- 2

interacting

non-interacting

any bonding orbital in matter
occupied
Giant Magnetoresistance typicallyHigh
Tc superconductivity
by 2 electrons

e-

efundamental role
in
radiation damage
(ionization+excitation)
Sept. 2007 location e 1

importance in
Lanzara group, UC Berkeley
life sciences


Slide 33

Two-electron dynamics
Pisharody and Jones
Science 303, 813 (2004)

– Rydberg electrons
– Barium atoms


Slide 34

Quantum Level Spacings
in a molecule
Separation: Electronic, Vibrational, Rotational

Ytotalyel,nFvib,mfrot,l
Energy

Ye,2
Ye,1

5

Ye,0

0

frot,l

Fv,n
Internuclear Distance


Slide 35

Born-Oppenheimer Approximation
Full Hamiltonian

Product Wavefunction:

Reduced Hamiltonian (internuclear only)

http://www.nat.vu.nl/~wimu/MolPhys.html


Slide 36

Estimation of Quantum Time Scales
Molecular rotation frequency
Tr=300 fs
Molecular vibration frequency
Tv=7 fs
Electron vibration frequency
Te=150 as
Electron rotation frequency

=

ħ
1
L


mpa02
2000
I






D
mp





D
me





ħ
L
=

=
2
mea0
I

1
1

2000
50
1
1
1
1


Slide 37

Recollision Physics
Paul Corkum, NRC Canada
ħ  HHG

elastic scattering  ATI
Strong laser field

e-e-

e-

inelastic scattering 
NSDI, excitation, fragmentation

spectroscopy parameters:
- alignment angle
- laser intensity / ellipticity / wavelength / CEP, ...
- multicolor excitation
- ...


Slide 38

Three-step model

P. Corkum, Phys. Rev. Lett. 71, 1994 (1993)


Slide 39

Molecular recollision


Slide 40

linear
elliptic
atom

molecule

normalized harmonic yield

HHG ellipticity dependence

ellipticity
A. Flettner et al. (Gerber group) EPJ D (2002)


Slide 41

Argon and Nitrogen

static polarizability


Slide 42

Ellipticity experiment setup


Slide 43

Example measurement: H13 in Ar


Slide 44

Experiment and Model: Ar


Slide 45

Nitrogen vs. Argon


Slide 46

HHG-Simulation


Slide 47

Earlier Results


Slide 48

simulation results Ar vs. N2

ellipticity


Slide 49

Electron-Wavepacket -Shaping
ionization



propagation recombination



different degrees of delocalization




Slide 50

Temporal evolution in laser field
0 .4
1
0 .3
0 .2

H-Atom

0 .1
0 .0
0

1
0 .3

-1 5-2

-1 0

-5

0

5

10

215

-1 5-2

-1 0

-5

0

5

10

215

-1 5-2

-1 0

-5

0

5

10

21 5

-1 5-2

-1 0

-5

0

5

10

21 5

-1 5-2

-1 0

-5

0

5

10

21 5

0 .2



0 .1





22
|Y(y)|
|Y(p
y)|

0 .0
0
0 .2
1
0 .1

0
0 .0
0 .2
2
0 .1
1
0 .0
0
0 .2
2

y
10 Å
x

0 .1
1

0 .0
0

momentum
y coordinate
py [a.u.]
[a.u.]


Slide 51

internuclear-distance dependence

conversion efficiency (H39-H51)

3.0

2.5

2.0

1.5

1.0

atom
0.5

molecular ground state

0.0
1

2

internuclear distance [Å]

3


Inf


Slide 52

Pump–Drive Scheme

T.P. et al. Phys. Rev. A 70, 013805 (2004)


pump pulse

driver pulse


Slide 53

Molecular Tomography

Itatani et al.(Corkum, Villeneuve
Nature 432, 867 (2004)