An Ultra-Low-Voltage CMOS Mixer Using Switched-Transconductance Current-Reuse Dynamic-Threshold-Voltage Gain-Boosting Techniques Amir Hossein Masnadi and Shahriar Mirabbasi IEEE NEWCAS, June 2012 Big Picture Designing Building Blocks for Ultra-Low–Voltage/Power CMOS RF.
Download ReportTranscript An Ultra-Low-Voltage CMOS Mixer Using Switched-Transconductance Current-Reuse Dynamic-Threshold-Voltage Gain-Boosting Techniques Amir Hossein Masnadi and Shahriar Mirabbasi IEEE NEWCAS, June 2012 Big Picture Designing Building Blocks for Ultra-Low–Voltage/Power CMOS RF.
An Ultra-Low-Voltage CMOS Mixer Using Switched-Transconductance Current-Reuse Dynamic-Threshold-Voltage Gain-Boosting Techniques Amir Hossein Masnadi and Shahriar Mirabbasi IEEE NEWCAS, June 2012 Big Picture Designing Building Blocks for Ultra-Low–Voltage/Power CMOS RF Front-End for applications such as: • Biomedical Application Above Picture : Smart Stents, SoC and MEMS lab, UBC • Low Power Wireless Communication Outline • Overview of Conventional Active Mixers • Overview of techniques – Stack Reduction, LO-Gm Separation – Current-Reuse – Dynamic Threshold • Mixer Design – Gm-Stage - Double Balanced Current Reuse Gilbert Structure – LO -Stage - Switched Supply Voltage • Post-Layout Simulation Results and Comparison • Concluding remarks 3 Conventional Active Mixers • Gilbert-Type Mixer (Current commutating) Reduce the voltage drop across the Load Resistor to increase M1 drain Voltage Challenge of biasing current source in saturation for low supply voltage (e.g. VDD < 1.5) Limitations for Supply-Voltage: – 3 stacked transistors each transistor VDS is around VDD/3 • Considering Vth is around 0.4 V, minimum supply voltage is around 1.2 V – To increase conversion gain (CG) one can increase load (CGαRL×) • Penalty: more voltage drop across load trade-off between VDD and CG Power Consumption issue: – Mixer core is always ON (For Biasing the transistors) Even more challenging if IIP3 has to be improved Supply Voltage (V) – Year (1997-2012) 3.2 3.1 3 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 1996 Roughly Reduction of 0.085 V/Year y = -0.0853x + 172.44 y = 4E+51e-0.059x •Bulk_Driven and Folded Methods •Very Low CG (1<CG<9) Range of Threshold Voltage 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Mixer Power (mW)– Year (1997-2012) 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1996 y = -0.8847x + 1781 y = 1E+122e-0.139x Roughly a reduction of 0.88 mW/Year (it is leveling off) 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Design Bottlenecks • Stacked Architectures : For decreasing Supply Voltage we should reduce Number of transistor Stacked stages , we have different methods , below we bring ONLY two of them : – Bulk-Driven Method • Low Conversion Gain (Mostly below 10) • Constant Biasing Current – Folded Gilbert Architecture • Moderate Conversion Gain – Wide Band • Constant Biasing Current • Bulky Inductors • Threshold Voltage : If decreases the headroom will increases, so it would be nice if we have lower threshold Voltage We can't find any significant publication for reducing threshold voltage in Mixers Proposed Techniques for Ultra Low Voltage Mixer 1. Reducing Stacked Transistors by Switched Transconductance: – LO-Stage and Gm-Stage can be separated by switching supply voltage of Gm-Stage VDD VDD Gm1 VRF Gm.VRF GND RL – Turn ON & Off Gm-Stage with LO Save Power RL VIF VDD +LO -LO +LO LO-Stage VDD -LO Gm1 -VRF RL +VRF GND RL VDD +VRF Gm-Stage -LO +VRF +VIF VDD -VIF VDD VDD (a) VDD VDD -VRF Gm2 GND +LO VDD -VRF Current Commutating Approach Gm ON/OFF Approach Proposed Techniques for Ultra-Low-Voltage Mixer 2. Choosing Gm-Stage, Maximizing Conversion Gain and Linearity: Pick a proper Gm-Stage for High Conversion Gain (High output Gm) and High Linearity Current-Reuse technique – Overal Gm = gmn+gmp – Linearity will be improved Total Gm=gmn Total Gm=gmn+gmp Current-Reuse is similar to Push-Pull Buffer -LO Switching Stage • We should implement a switch between VDD and GND A VDD – Different Options : • Simple Digital Inverter • High-speed comparator (compare LO with GND, requires low LO power) DTMOS Inverter • Inverter with Dynamic Threshold-Voltage: Reduce VTH of NMOS transistors by connecting inverter output to body of NMOS (DTMOS) VDD VDD LO LO A B CL (a) CL (b) Output voltage of the inverter with CL=1pF, PLO= −8 dBm, 2.45 GHz LO signal and DC value of LO is 0.3 V, (a) with dynamic threshold (DTMOS) inverter (b) without DTMOS. Proposed Building Block For ULV Mixer +LO Switching Stage VDD M2 RL Cd VRF VIF Current Reuse Gm stage M1 -LO Proposed Double-Balanced Design +LO 10K VBP DTMOS Inverter 10K 10K VBN 10K B VDD M7 Differential Current Reuse1 Cd +VRF M1 NMOS - Vout + -VRF M2 Differential Current Reuse2 Cd RL M5 NMOS Cd M6 PMOS VDD A 10K VBN 10K +VRF M8 +VIF Cd RL -VRF M4 PMOS -VIF M3 DTMOS Inverter -LO 10K VBP 10K Post-Layout Simulation Results Case 1 : Sub Threshold Case 2 : Sub Threshold Case 3 : Super Threshold Case 4 : Super Threshold Case 5 : Super Threshold VDD (V) VBN (V) VBP (V) PLO (dBm) NF (dB) CG (dB) IIP3 (dBm) 0.35 0.35 0.00 -3.75 12.7 13 -3.08 0.4 0.40 0.00 -4.00 11.2 14.7 -5.54 0.5 0.47 0.00 - 4.1 10.56 15.8 -8.6 0.8 0.4 0.4 -6.6 12 15.2 -7.04 1.2 0.75 0.6 -7.5 11.1 17.3 -8.1 PDC (mW) 0.48 0.6 1.6 3.4 12 20 • IBM0.13-µm CMOS • VTH≈ 0.42 V Conversion Gain (dB) 15 10 5 0 -5 VDD=1.2 VDD=0.8 VDD=0.5 VDD=0.4 VDD=0.35 -10 -15 -10 -9 -8 -7 -6 -5 -4 PLO(dBm) -3 -2 -1 0 Effect of Dynamic Threshold Technique 20 0 DTMOS Inverter -10 Standard Inverter Conversion Gain(dB) 10 -20 VDD=0.5 VDD=0.5 VDD=1.2 VDD=1.2 -30 -40 -10 -9 -8 -7 -6 -5 PLO(dBm) -4 -3 With DTNMOS Without DTNMOS With DTNMOS Without DTNMOS -2 -1 0 Conversion Gain at Different Supply Voltages 15 VDD from 0.4V to 0.2V Conversion Gain(dB) 10 5 VDD=0.25Volt 0 -5 -10 -15 -5 -4.5 -4 -3.5 -3 PLO(dBm) -2.5 -2 -1.5 -1 Parameters LO-Gm Architecture This Work* This Work* Separated Separated JSSC Separated RFIC RFIC Stacked Folded MTT Folded MTT Folded LO-Gm Separation Method DTMOS Inverter DTMOS Inverter Conventional Inverter N/A N/A N/A N/A Gm-Stage Current Reuse Current Reuse NMOS NMOS Current Reuse NMOS RF (GHz) IF (MHz) PLO(dBm) VDD(V) 2.5 50 −3.75 0.35 2.5 50 −4.1 0.5 2.01 10 −4 1 2.4 60 −9 1 Curren t Reuse 2.4 1 −2.0 1.8 5.3 1 −3.6 0.9 8.6 4350 −3.3 0.6 0.5 18.3 −9 15.7 0.13 8.1 12.9 1 15.7 0.13 6.6 24 −11.6 8.9 0.13 0.6 15.9 −8 6 0.13 22.15/ 21.36 14.41 / 16.17 1.75 / 0.50 24.32 /21.31 Subthresho Subthreshold ld PDC(mW) NF (dB) IIP3(dBm) Conversion Gain (dB) CMOS Technology (µm) FOM1 / FOM2 0.48 12.7 −3.08 13 0.13 31.65 / 26.3 1.6 10.56 −8.6 15.8 0.13 0.5 23.7 7 9.8 0.18 25.78 / 22 18.62 / 17.83 Concluding Remarks Techniques to improve mixer performance: •Reduce stacked levels • For Gm-Stage , try to choose blocks with higher output Gm and Linearity • Reduce VTH by body effect (Dynamic Threshold Technique), Both for Gm-Stage and LO-Stage, so we can use it for increasing headroom an • Turn-off circuit when you don’t want to use it to save power TSMC 90nm Process RF VDD (V) 0.3 PLO (dBm) -8.4 CG (dB) 27-15 Frequenc DC-12GHz y PDC (mW) 0.09 mWatt LO IF+ Active Balun IF- Resonator Mixer Core Resonator Buffer Acknowledgments 1. NSERC 2. CMC Microsystems • IBM • TSMC And thank you for listening! 19 REFERENCES • • • • • • • E.A.M. KLUMPERINK, S.M. LOUWSMA, G.J.M. WIENK, AND B. NAUTA, “A CMOS SWITCHED TRANSCONDUCTOR MIXER,“ IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL.39, NO.8, PP. 1231- 1240, AUG. 2004. Hanil Lee; Mohammadi, S., “A 500μW 2.4GHz CMOS Subthreshold Mixer for Ultra Low Power Applications,“ IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, vol., no., pp.325-328, 3-5 June 2007. Kihwa Choi; Dong Hun Shin; Yue, C.P., “A 1.2-V, 5.8-mW, Ultra-Wideband Folded Mixer in 0.13-μm CMOS,“ IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, vol., no., pp.489-492, 3-5 June 2007. Assaderaghi, F.; Sinitsky, D.; Parke, S.A.; Bokor, J.; Ko, P.K.; Chenming Hu; "Dynamic thresholdvoltage MOSFET (DTMOS) for ultra-low voltage VLSI ," Electron Devices, IEEE Transactions on , vol.44, no.3, pp.414-422, Mar 1997. V. Vidojkovic, et al., “A Low-Voltage Folded-Switching Mixer in 0.18-um CMOS, “ IEEE J. Solid-State Circuits, vol. 40, pp. 1259-1264, June 2006. S. He and C.E. Saavedra, “An Ultra-Low-Voltage and Low-Power 2 Subharmonic Downconverter Mixer,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 2, pp. 311-317, Feb. 2012. M. Huang, et al., "A 5.25-GHz CMOS Folded-Cascode Even-Harmonic Mixer for Low-Voltage Applications," IEEE Trans. Microwave Theory Tech., vol. 54, no. 2, pp. 660-669, Feb. 2006.