CHEMISTRY OF IONS IN THE GAS PHASE: FULLERENES AND ATOMIC CLUSTERS Olivera Nešković Vinča Institute of Nuclear Sciences A simple definition of a Mass Spectrometer • A.
Download ReportTranscript CHEMISTRY OF IONS IN THE GAS PHASE: FULLERENES AND ATOMIC CLUSTERS Olivera Nešković Vinča Institute of Nuclear Sciences A simple definition of a Mass Spectrometer • A.
CHEMISTRY OF IONS IN THE GAS PHASE: FULLERENES AND ATOMIC CLUSTERS Olivera Nešković Vinča Institute of Nuclear Sciences A simple definition of a Mass Spectrometer • A Mass Spectrometer is an analytical instrument that can separate charged molecules according to their mass–to–charge ratio. • Mass spectrometer can answer the questions “what is in the sample” (qualitative structural information) and “how much is present” (quantitative determination) for a very wide range of samples at high sensitivity Investigator(s) Contribution Nobel Prize Thomson 1897 discovery of the electron, first mass spectrometer 1906 in Physics Dempster 1918 Electron ionization and magnetic focusing Aston 1919 atomic weights using MS and isotopes study Stephens 1946 Time-of-flight mass analysis Hipple, Sommer, and Thomas 1949 Ion cyclotron resonance 1922 in Chemistry Johnson and Nier 1953 Double-focusing instruments Paul and Steinwedel 1953 Quadrupole analyzers Beynon 1956 High-resolution MS 1989 in Physics VINCA Advanced Mass Spectrometry Facility Picture Gallery Maldi TOF Mass Spectromerer Magnetic Mass Spectrometer MS-1-MT Quadrupole Mass Spectrometer Mass Spectrometry Group FULLERENES DERIVATIZED (FUNCTIONALIZED) FULLERENES CARBON NANOTUBES FUNCTIONALIZED NANOTUBES • • • • • • • • Li@C60, Li@C70, Li2@C70 and Li3@C70 Fullerenol C60(OH)16, C60(OH)22 Fullerene bisadduct derivative C60C15H29N3O4 Carbon nanotubes as Maldi matrix Decorated carbon nanotubes by silver clusters Endo and exo fullerenes by 99mTc Carbon nanotubes derocated by DNA Sequencing DNA by carbon nanotubes The personal review (the limiting range of topics): • Prof. Dr. T.D. Märk, Institut für Ionenphysik, Innsbruck, Austria • Prof. Dr. Chava Lifshictz, The Hebrew University of Jerusalem, Israel • Prof. Dr. Lev Sidorov, Moscow State University, Russia • Prof. Dr. Thomas Drewello, University of Warwick, UK • Prof. Dr. Maurizio Prato, University of Trieste, Italy Components of a Mass Spectrometer Sample plate Extraction grids Laser Timed ion selector Reflector detector Reflector Linear detector Camera Pumping Pumping INLET ION SOURCE MASS FILTER DETECTOR Sample plate MALDI TOF “Hybrid” HPLC GC Solids probe API/Electrospray IonSpray EI, CI Quadrupole Ion Trap Magnetic Sector FTMS Microchannel Plate Electron Multiplier Ion Source: MALDI (Matrix Assisted Laser Desorption Ionisation) Laser flash produces matrix (M) neutrals, positive, negative ions and sample neutrals. + M M*, MH+, (M-H)- + + + Sample molecules (A) are ionised by gas phase proton transfer MH++A (M-H)-+A AH++M AH-+M Delayed Extraction (DE) 0 kV 0 nsec Ions of same mass, different velocities ++ + 1: Laser fired. Formed ions detach from plate in the absence of an electric field. 0 kV + 150 nsec + + 2: Expansion of the ion cloud in the absence of an electric field. + +20 kV + Detector + 3: Field applied. Gradient accelerates slow ions more than fast ones. +20 kV 4: Slow ions catch up with faster ones at the detector. ++ + + Mass Filter: Reflector TOF The electrical field applied within the reflector produces an ion mirror effect directing the ions towards a second detector Improvement in resolution by • Increasing the effective flight length of the tube • Re-focusing of analogous ions having slight different energy due to initial spread in the ion source MALDI-TOF Matrices CH O 3 COOH CH CHCOOH CH OH C(CN)COOH HO HO CH O 3 HO 2,5-dihydroxybenzoic acid (2,5-DHB) Sinapinic acid (3,5-Dimethoxy4-hydroxy cinnamic acid) -cyano-4-hydroxycinnamic acid COCH COOH N N OH 2-(4-hydroxyphenylazo)benzoic acid (HABA) OH O Carbon Clusters Peptide (0.1-10 pmol/l) Protein (0.1-10 pmol/ l) Oligonucleotide (10-100 pmol/ l) Polymer (10-4M) OH HO 3 OH OH 2,4,6-trihydroxy acetophenone (THAP) COOH H COOH C C H OH N N Dithranol 3-hydroxypicolinic acid (3-HPA) trans-3-indoleacrylic acid CHCA and DCTB matrices Isotopic Resolution • What benefit is high resolution • Improved identification of peptides • Indication of potential modification • Greater degree of mass accuracy • Resolution is defined as : Mass / (peak width at half peak height) High Resolution - Too much data? Monoisotopic resolution of Insulin 2 x C13 C13 C12 : 5730.61 In compounds with more than 100 carbon atoms the height of the 13C isotope peak exceeds the height of the 12C peak MALDI TOF mass spectrum of the fullerenol C60(OH)16 containing sample using DCTB as a matrix and the corresponding negative-ion results Novel fullerene bisadduct derivative MALDI TOF mass spectrum of the novel fullerene bisadduct derivative C60C15H29N3O4. M+ and [M-H]+ positive ions , m/z= 1035.56 and 1036.48, were detected using CHCA and DCTB matrices MALDI spectra of unpurified MWCN and SEM image The positive MALDI spectra of fullerenes C60 with carbon nanotubes Exo and endohedral compleves of C60 and C70 and C60(OH)(22) [99mTc(CO)3(H2O)3]@C60(OH)(22) Silver clusters on carbon nanotubes Figure 1. TEM images of Ag/polymer MWCNT, (a) in the atmosphere of Ar, (b) in the Figure 4: (a) STM image of MWCNT, (b) STM image of Ag/MWCNT Figure 5. STM image of Ag cluster % Intensity 520 Mass spectrum of silver clusters 540 Mass (m /z) 560 566.0222 580 597.1603 594.8686 592.8669 590.8674 586.0416 584.0289 560 582.0224 577.6596 575.6540 519.2761 558.8168 548.8660 577.6464 575.6449 573.6461 594.8358 592.8387 590.8397 586.0269 584.0125 582.0063 579.6465 576.6519 574.6469 571.6459 560.8096 538.0115 540.0176 546.8654 550.8667 547.8666 544.8619 543.0383 541.0216 539.0154 535.9985 532.8652 530.8639 528.8698 526.8759 522.0126 560 579.6620 578.2431 576.6692 574.6693 570.8796 571.6611 572.6711 568.0260 540 560.8234 515.7372 517.2804 504.8817 502.8788 540 558.8225 556.8302 554.0315 573.6571 548.8847 550.8857 547.8834 546.8802 544.8741 540.0317 520 541.0361 537.7695 539.0295 538.0265 513.7502 511.7328 512.7377 513.7347 509.7336 506.8859 507.8861 503.8807 500.8739 501.8754 520 542.5086 504.8934 511.7487 535.2653 536.0130 533.7408 530.8863 528.8879 526.8900 524.9095 522.0139 519.2823 517.2814 515.7507 512.7545 509.7503 506.9008 507.9090 503.8916 502.8875 100 90 80 70 60 50 40 30 20 10 0 500 501.8875 % Intensity 500.8580 583.9943 597.1165 594.8422 592.8418 590.8431 586.0027 575.6302 573.6307 548.8569 577.6312 581.9841 579.6296 576.6354 574.6387 573.1227 571.6323 567.9949 565.9926 553.9944 540.0009 537.9944 504.8709 502.8666 546.8552 550.8581 551.8629 547.8573 544.8486 543.0150 538.9969 540.1561 541.0039 538.1509 534.7233 535.9811 536.7193 532.8577 530.8552 528.8582 526.8577 524.8610 521.9890 519.2477 517.2502 511.7164 513.7162 515.7169 512.7198 509.7170 507.8778 505.8734 506.8752 503.8677 501.8599 100 90 80 70 60 50 40 30 20 10 0 500 500.8856 100 90 80 70 60 50 40 30 20 10 0 500 500.0455 % Intensity <<A2_20090401_O1>> 4700 Reflector Spec #1[BP = 610.8, 98238] 9.1E +4 <<A4_20090401_O2>> 4700 Reflector Spec #1[BP = 610.8, 83871] Mass (m /z) 580 600 5.9E +4 <<A5_20090401_O3>> 4700 Reflector Spec #1=>SM3[BP = 502.9, 85908] Mass (m /z) 580 600 8.6E +4 600 Using carbon nanotubes to induce micronuclei and double strand breaks of the DNA in human cells Jelena Cveticanin, Gordana Joksic, Andreja Leskovac, Sandra Petrovic, Ana Valenta Sobot and Olivera Neskovic1 Vinca Institute of Nuclear Sciences, PO Box 522, Belgrade, Serbia Figure 1 Figure 2 Figure 1: Implication of functionalized CNTS in the human lymphocyte cell Figure 2: STM picture of functionalized CNTS by sequence of DNA Hipervalent molecules LinI, n=2-6 Knudsen efusion mass spectromety LiI with C70 Experimental and theoretical investigation of new hypervalent molecules LinF (n = 2–4) Mass Spectrometry Group Vinča Institute of Nuclear Sciences • Thermal Ionization Mass Spectrometry (TIMS) • Maldi-Tof Mass Spectrometry (Maldi-Tof MS) Olivera Nešković Miomir Veljković Suzana Veličković Vesna Đorđević Jelena Cvetićanin Jasmina Đustebek Aleksandra Đerić Đorđe Trpkov