CHEMISTRY OF IONS IN THE GAS PHASE: FULLERENES AND ATOMIC CLUSTERS Olivera Nešković Vinča Institute of Nuclear Sciences A simple definition of a Mass Spectrometer • A.

Download Report

Transcript CHEMISTRY OF IONS IN THE GAS PHASE: FULLERENES AND ATOMIC CLUSTERS Olivera Nešković Vinča Institute of Nuclear Sciences A simple definition of a Mass Spectrometer • A.

CHEMISTRY OF IONS IN THE GAS
PHASE: FULLERENES AND
ATOMIC CLUSTERS
Olivera Nešković
Vinča Institute of Nuclear Sciences
A simple definition of a Mass
Spectrometer
• A Mass Spectrometer is an analytical instrument
that can separate charged molecules according
to their mass–to–charge ratio.
• Mass spectrometer can answer the questions
“what is in the sample” (qualitative structural
information) and “how much is present”
(quantitative determination) for a very wide
range of samples at high sensitivity
Investigator(s) Contribution
Nobel
Prize
Thomson
1897 discovery of the electron,
first mass spectrometer
1906 in
Physics
Dempster
1918 Electron ionization and
magnetic focusing
Aston
1919 atomic weights using MS
and isotopes study
Stephens
1946 Time-of-flight mass analysis
Hipple, Sommer,
and Thomas
1949 Ion cyclotron resonance
1922 in
Chemistry
Johnson and Nier 1953 Double-focusing instruments
Paul and
Steinwedel
1953 Quadrupole analyzers
Beynon
1956 High-resolution MS
1989 in
Physics
VINCA
Advanced
Mass
Spectrometry
Facility
Picture
Gallery
Maldi TOF Mass Spectromerer
Magnetic Mass Spectrometer MS-1-MT
Quadrupole Mass Spectrometer
Mass Spectrometry Group
FULLERENES
DERIVATIZED (FUNCTIONALIZED) FULLERENES
CARBON NANOTUBES
FUNCTIONALIZED NANOTUBES
•
•
•
•
•
•
•
•
Li@C60, Li@C70, Li2@C70 and Li3@C70
Fullerenol C60(OH)16, C60(OH)22
Fullerene bisadduct derivative C60C15H29N3O4
Carbon nanotubes as Maldi matrix
Decorated carbon nanotubes by silver clusters
Endo and exo fullerenes by 99mTc
Carbon nanotubes derocated by DNA
Sequencing DNA by carbon nanotubes
The personal review (the limiting
range of topics):
• Prof. Dr. T.D. Märk, Institut für Ionenphysik,
Innsbruck, Austria
• Prof. Dr. Chava Lifshictz, The Hebrew
University of Jerusalem, Israel
• Prof. Dr. Lev Sidorov, Moscow State
University, Russia
• Prof. Dr. Thomas Drewello, University of
Warwick, UK
• Prof. Dr. Maurizio Prato, University of Trieste,
Italy
Components of a Mass
Spectrometer
Sample
plate
Extraction
grids
Laser
Timed ion
selector
Reflector
detector Reflector
Linear
detector
Camera
Pumping
Pumping
INLET
ION SOURCE
MASS FILTER
DETECTOR
Sample plate
MALDI
TOF
“Hybrid”
HPLC
GC
Solids probe
API/Electrospray
IonSpray
EI, CI
Quadrupole
Ion Trap
Magnetic Sector
FTMS
Microchannel Plate
Electron Multiplier
Ion Source: MALDI
(Matrix Assisted Laser Desorption Ionisation)
Laser flash produces matrix (M)
neutrals, positive, negative ions
and sample neutrals.
+
M
M*, MH+, (M-H)-
+
+
+
Sample molecules (A) are ionised
by gas phase proton transfer
MH++A
(M-H)-+A
AH++M
AH-+M
Delayed Extraction (DE)
0 kV
0 nsec
Ions of same mass, different
velocities
++
+
1: Laser fired. Formed ions detach from plate in the absence of an electric field.
0 kV
+
150 nsec
+
+
2: Expansion of the ion cloud in the absence of an electric field.
+
+20 kV
+
Detector
+
3: Field applied. Gradient accelerates slow ions more than fast ones.
+20 kV
4: Slow ions catch up with faster ones at the detector.
++
+
+
Mass Filter: Reflector TOF
The electrical field applied within the reflector produces an ion
mirror effect directing the ions towards a second detector
Improvement in resolution by
• Increasing the effective flight length of the tube
• Re-focusing of analogous ions having slight different
energy due to initial spread in the ion source
MALDI-TOF Matrices
CH O
3
COOH
CH
CHCOOH
CH
OH
C(CN)COOH
HO
HO
CH O
3
HO
2,5-dihydroxybenzoic
acid (2,5-DHB)
Sinapinic acid (3,5-Dimethoxy4-hydroxy cinnamic acid)
-cyano-4-hydroxycinnamic acid
COCH
COOH
N
N
OH
2-(4-hydroxyphenylazo)benzoic acid (HABA)
OH
O
Carbon Clusters
Peptide (0.1-10 pmol/l)
Protein (0.1-10 pmol/ l)
Oligonucleotide (10-100 pmol/ l)
Polymer (10-4M)
OH
HO
3
OH
OH
2,4,6-trihydroxy
acetophenone (THAP)
COOH
H
COOH
C
C
H
OH
N
N
Dithranol
3-hydroxypicolinic acid (3-HPA)
trans-3-indoleacrylic acid
CHCA and DCTB matrices
Isotopic Resolution
• What benefit is high resolution
• Improved identification of peptides
• Indication of potential modification
• Greater degree of mass accuracy
• Resolution is defined as :
Mass / (peak width at half peak height)
High Resolution - Too much data?
Monoisotopic resolution of Insulin
2 x C13
C13
C12 : 5730.61
In compounds with more than 100 carbon atoms the
height of the 13C isotope peak exceeds the height of the
12C peak
MALDI TOF mass spectrum of the fullerenol
C60(OH)16 containing sample using DCTB as a
matrix and the corresponding negative-ion results
Novel fullerene bisadduct derivative
MALDI TOF mass spectrum of the novel fullerene bisadduct
derivative C60C15H29N3O4. M+ and [M-H]+ positive ions , m/z=
1035.56 and 1036.48, were detected using CHCA and DCTB
matrices
MALDI spectra of unpurified
MWCN and SEM image
The positive MALDI spectra of
fullerenes C60 with carbon nanotubes
Exo and endohedral compleves of C60 and C70 and C60(OH)(22)
[99mTc(CO)3(H2O)3]@C60(OH)(22)
Silver clusters on carbon nanotubes
Figure 1. TEM images of Ag/polymer MWCNT, (a) in the atmosphere of Ar, (b) in the
Figure 4: (a) STM image of MWCNT, (b) STM image of Ag/MWCNT
Figure 5. STM image of Ag cluster
% Intensity
520
Mass spectrum of silver clusters
540
Mass (m /z)
560
566.0222
580
597.1603
594.8686
592.8669
590.8674
586.0416
584.0289
560
582.0224
577.6596
575.6540
519.2761
558.8168
548.8660
577.6464
575.6449
573.6461
594.8358
592.8387
590.8397
586.0269
584.0125
582.0063
579.6465
576.6519
574.6469
571.6459
560.8096
538.0115
540.0176
546.8654
550.8667
547.8666
544.8619
543.0383
541.0216
539.0154
535.9985
532.8652
530.8639
528.8698
526.8759
522.0126
560
579.6620
578.2431
576.6692
574.6693
570.8796
571.6611
572.6711
568.0260
540
560.8234
515.7372
517.2804
504.8817
502.8788
540
558.8225
556.8302
554.0315
573.6571
548.8847
550.8857
547.8834
546.8802
544.8741
540.0317
520
541.0361
537.7695
539.0295
538.0265
513.7502
511.7328
512.7377
513.7347
509.7336
506.8859
507.8861
503.8807
500.8739
501.8754
520
542.5086
504.8934
511.7487
535.2653
536.0130
533.7408
530.8863
528.8879
526.8900
524.9095
522.0139
519.2823
517.2814
515.7507
512.7545
509.7503
506.9008
507.9090
503.8916
502.8875
100
90
80
70
60
50
40
30
20
10
0
500
501.8875
% Intensity
500.8580
583.9943
597.1165
594.8422
592.8418
590.8431
586.0027
575.6302
573.6307
548.8569
577.6312
581.9841
579.6296
576.6354
574.6387
573.1227
571.6323
567.9949
565.9926
553.9944
540.0009
537.9944
504.8709
502.8666
546.8552
550.8581
551.8629
547.8573
544.8486
543.0150
538.9969
540.1561
541.0039
538.1509
534.7233
535.9811
536.7193
532.8577
530.8552
528.8582
526.8577
524.8610
521.9890
519.2477
517.2502
511.7164
513.7162
515.7169
512.7198
509.7170
507.8778
505.8734
506.8752
503.8677
501.8599
100
90
80
70
60
50
40
30
20
10
0
500
500.8856
100
90
80
70
60
50
40
30
20
10
0
500
500.0455
% Intensity
<<A2_20090401_O1>> 4700 Reflector Spec #1[BP = 610.8, 98238]
9.1E +4
<<A4_20090401_O2>> 4700 Reflector Spec #1[BP = 610.8, 83871]
Mass (m /z)
580
600
5.9E +4
<<A5_20090401_O3>> 4700 Reflector Spec #1=>SM3[BP = 502.9, 85908]
Mass (m /z)
580
600
8.6E +4
600
Using carbon nanotubes to induce
micronuclei and double strand breaks of
the DNA in human cells
Jelena Cveticanin, Gordana Joksic, Andreja Leskovac,
Sandra Petrovic, Ana Valenta Sobot and Olivera Neskovic1
Vinca Institute of Nuclear Sciences, PO Box 522, Belgrade, Serbia
Figure 1
Figure 2
Figure 1: Implication of functionalized CNTS in the human lymphocyte cell
Figure 2: STM picture of functionalized CNTS by sequence of DNA
Hipervalent molecules
LinI, n=2-6
Knudsen efusion mass spectromety
LiI with C70
Experimental and theoretical investigation of
new hypervalent molecules LinF (n = 2–4)
Mass Spectrometry Group
Vinča Institute of Nuclear Sciences
• Thermal Ionization Mass Spectrometry (TIMS)
• Maldi-Tof Mass Spectrometry (Maldi-Tof MS)
Olivera Nešković
Miomir Veljković
Suzana Veličković
Vesna Đorđević
Jelena Cvetićanin
Jasmina Đustebek
Aleksandra Đerić
Đorđe Trpkov