Fast time resolution airborne measurements of PANs during the New England Air Quality Study 2004 intensive. Frank Flocke, Aaron Swanson, Jim Roberts, Greg Huey,
Download ReportTranscript Fast time resolution airborne measurements of PANs during the New England Air Quality Study 2004 intensive. Frank Flocke, Aaron Swanson, Jim Roberts, Greg Huey,
Fast time resolution airborne measurements of PANs during the New England Air Quality Study 2004 intensive. Frank Flocke, Aaron Swanson, Jim Roberts, Greg Huey, David Tanner Tom Ryerson, Andy Neuman, John Holloway, Joost deGouw, Carsten Warneke Elliot Atlas, Stephen Donnelly, Sue Schauffler, Verity Stroud Thanks to: NOAA AOC, Paul Stock (DLR) New PAN-CIGAR instrument: • • • • • • • • Chemical Ionization Mass Spectrometer Based on reaction of PA radicals with IFast (time resolution 0.25 – 2 seconds) Sensitive (10-60 cts/pptv on background of 250 cts or less) Very selective Autonomous Eight different PAN species measured during ICARTT 2004 don’t miss the PAN-CIGAR Instrument talk: Swanson et al., A42B-04; Thu, 11:20; MCC 3018 Tropospheric Photochemistry II Which PANs were measured? Example flight 7/20/2004, NYC plume 3000 2500 PAN, Altitude 2000 350 300 250 200 1500 150 1000 100 500 0 50 dat 19:15 7/20/2004 19:20 19:25 19:30 19:35 19:40 0 19:20 7/20/2004 19:30 19:40 PPN, PBN, APAN, MoPAN, PBzN PAN (pptv) PPN (pptv) PBN (pptv) PBzN (pptv) APAN (pptv) MoPAN (pptv) Flt. Altitude (m) Biomass burning plume encountered over Quebec 7/28/2004 PAN PPN PBN APAN PBzN MoPAN 1600 1400 150 PAN (pptv) 1000 Flight alt. const. 3000m Flight alt. 3000m 100 800 600 50 400 200 0 16:30 7/28/2004 16:35 16:40 16:45 16:50 16:55 17:00 PPN, PBN, MoPAN, APAN, PBzN (pptv) 1200 Biomass burning plume encountered over Quebec 7/28/2004 PAN PPN PBN APAN PBzN MoPAN NOy_3 1600 1400 150 PAN (pptv) Flight Alt. const. 3000m Flight alt. 3000m 1000 100 800 600 50 400 200 0 16:30 7/28/2004 16:35 16:40 16:45 16:50 16:55 17:00 PPN, PBN, MoPAN, APAN, PBzN (pptv) 1200 PAN transport and NOx release 7/20/2004 Biomass burning plume from AK and CDN Fires PAN is dominant NOY component, HNO3 washed out or lost on aerosols, PAN decomposition maintains NOX on air mass descent 3500 PAN, NOx, NOy, HNO3, Altitude 3000 2500 Flight Altitude (m) PAN Ozone (ppbv) NOx (pptv) HNO3 (pptv) NOy (pptv) CH3CN (arb.) Ozone τ(PAN) ≈ 20h 100 80 2000 1500 60 1000 40 500 0 17:15 7/20/2004 17:30 Time 17:45 7/21/2004 Same biomass burning plume from AK and CDN Fires encountered again over Cape Cod one day later Some processing has occurred (HNO3 formation), still PAN decomposition maintains NOX on air mass descent τ(PAN) ≈ 18h PAN, NOx, NOy, Altitude 3000 2500 Flight Altitude (m) PAN Ozone (ppbv) NOx (pptv) HNO3 (pptv) NOy (pptv) Acetonitrile (arb.) 2000 120 100 80 1500 60 1000 40 500 20 0 19:50 7/21/2004 20:00 Time 20:10 Ozone 3500 Biomass Burning during ICARTT don’t miss Joost de Gouw, A51G-05; Fri, 9:15, MCC 3018 Tropospheric Photochemistry VI PAN / PPN ratio What controls the PAN / PPN ratio: Production: -PAN / PPN ratio upon formation depends on availability of source VOC -Alkanes/Alkenes make PAN and PPN (ratio?) -Isoprene and Terpenes make just PAN PAN/PPN increases with biogenic HC burden More PAN further away from sources (?) and loss: warm PBL: Upper Troposphere: -Thermal loss is fastest -PAN is lost faster than PPN (Kirchner et al., 2000) PAN / PPN decreases (hours-days) -Photolysis dominates -PPN photolysis slightly faster than PAN (Harwood et al., 2003) PAN / PPN increases very slowly (weeks) PAN / PPN ratio: Is there an “anthropogenic” PAN/PPN ratio? PAN/PPN during TRACE-P 1000 800 Slope ~ 6 600 400 pFW_PAN_pptv PAN_100_160 PAN_160_200 PAN_200_240 PAN_US Fit_100_160 slope = 5.6 Fit_160_200 slope = 6.1 Fit_200_240 slope = 9.0 Fit_US slope = 6.2 200 0 0 50 100 150 200 Similar slopes of PAN / PPN were obtained in Houston (TexAQS 2000), during TOPSE (Spring 2000) and in/over other urban areas PAN / PPN ratio: and in New England? 7/20/2004 flight Slope~12 2500 Slope~9 Slope~6 PAN (pptv) 2000 1500 1000 500 0 50 100 5 10 15 NOy (pptv) 150 200 250 PPN (pptv) 300 3 20x10 350 7/31/2004 Flt, NYC Plume at Night Biogenic influence reflected in PAN/PPN ratio 20 Ratio 600 PAN PPN Flt. Altitude PAN / PPN MVK + MACR (arbitr.) 60 3000 500 2500 400 2000 10 40 300 200 PPN (pptv) PAN (pptv); Flight Altitude / 5 (m) 15 1500 5 1000 20 0 100 500 0 -5 04:10 8/1/2004 0 04:20 04:30 04:40 04:50 05:00 05:10 PAN / PPN ratio: Can we see the effect of different thermal loss rates? Ratio Flight 8/10/2004 – NYC Plume at Night PAN PPN PAN/PPN Flt. Altitude 1500 150 PPN (pptv) PAN (pptv), Flight Altitude (m) 16 14 12 1000 100 10 8 500 50 6 0 4 04:50 8/10/2004 05:00 0 05:10 05:20 Ratio Flight 8/10/2004 – NYC Plume at Night PAN PPN PAN/PPN Flt. Altitude 1500 150 PPN (pptv) PAN (pptv), Flight Altitude (m) 16 14 12 1000 100 10 8 500 50 6 0 4 04:50 8/10/2004 05:00 0 05:10 05:20 Flight 8/10/2004 – NYC Plume at Night PAN PPN PAN/PPN Flt. Altitude 1500 150 14 Ratio 12 1000 100 10 8 500 50 6 0 4 05:30 8/10/2004 0 05:40 05:50 PPN (pptv) PAN (pptv), Flight Altitude (m) 16 Ratio Flight 8/10/2004 – NYC Plume at Night PAN PPN PAN/PPN Flt. Altitude PAN (pptv), Flight Altitude (m) 16 1500 150 14 12 1000 100 10 500 8 50 6 0 4 0 06:10 8/10/2004 06:20 06:30 SUMMARY • First fast time resolution airborne measurements of PAN • We observed 8 different PANs including first observations of MoPAN, PPeN (and PBzN) • Elevated APAN and MoPAN in biomass burning plumes • One can learn a lot about photochemical history of air masses by just measuring PAN and PPN accurately • We can do that now at 2 Hz or better • Biomass burning plumes show distinct PAN/PPN ratio which appears preserved over several days